Skip to main content
Log in

A finite element analysis of strain localization for soft rock using a constitutive equation with strain softening

Eine Finite-Element-Analyse der lokalisierten Verformung von weichem Gestein bei einem Stoffgesetz mit Entfestigung

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

It is well known that deformation and/or strain of geological materials localize when they come close to the failure state. In the present: study, we try to analyze the deformation problem using a constitutive relation with strain hardening and strain softening. The constitutive model of a soft rock and overconsolidated clay using an elasto-plastic constitutive theory with memory was originally developed by Adachi and Oka. This type of formulation is shown to be easily applied to analyze the material behavior of strain softening because there is a similarity to that in viscoplasticity. Using the proposed model, the loss of uniqueness of the solution to the initial value problem can be avoided and a special or complicated numerical technique, e.g., an arc length method, does not need to be used. When we use constitutive equations with strain softening in a finite element analysis, there is a problem of strong mesh size dependency of numerical results. To remedy the mesh size dependency, we generalize the Adachi-Oka model based on the concept of non-localization by Bazant. We apply the proposed constitutive model to the behavior of a sedimentary soft rock in the drained triaxial compression test. It is found that mesh size dependency becomes smaller using the non-localization of the constitutive model.

Übersicht

Bekanntlich findet bei geologischen Stoffen in der Nähe des Versagenszustandes eine Lokalisierung der Verformung statt. Die Analyse dieses Problems wird in diesem Beitrag auf der Grundlage eines Stoffansatzes mit Ver- und Entfestigung unternommen. Entwickelt wurde das zugrunde gelegte elastischplastische Stoffmodell mit Gedächtnis von Adachi und Oka für weiches Gestein und übermäßig verdichteten Ton. Wegen der Ähnlichkeit zur Viskoplastizität läßt sich diese Formulierung des Stoffgesetzes leicht auf die Analyse des Verhaltens von entfestigendem Material anwenden, da der Eindeutigkeitsverlust der Lösung des Anfangswertproblems vermieden wird und besondere Rechenverfahren wie etwa die Bogenlängenmethode nicht benötigt werden. Bei der Benutzung von Stoffgesetzen in einer Finite-Element-Rechnung hängen die Ergebnisse stark von der Netzeinteilung ab. Um dies abzustellen, wird das Modell von Adachi und Oka auf der Grundlage von Bazant's Konzept der Nichtlokalisierung verallgemeinert. Anwendungsbeispiel ist das Verhalten von weichem Gestein im drainierten Triaxial-Test. Es zeigt sich, daß mit dem Konzept der Nichtlokalisierung im Stoffmodell der Einfluß der Netzeinteilung geringer wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cundall, P. A.: Numerical experiments on localization in frictional materials. Ing. Arch. 59 (1989) 148–150

    Google Scholar 

  2. Riks, E.: The application of Newton's method to the problem of elastic stability. J. Applied Mechanics. 39 (1972) 1060–1066

    Google Scholar 

  3. Wempner, G. A.: Discrete approximations related to nonlinear theories of Solid. Int. J. Solids Struct. 7 (1971) 1581–1599

    Google Scholar 

  4. Oka, F.; Adachi, T.: An elasto-plastic constitutive equation of geologic materials with memory. Proc. 5th Int. Conf. Num. Meth. in Geo. Nagoya. Balkema. (1985) 293–300

  5. Valanis, K. C.: A theory of viscoplasticity without a yield surface, Part I. Arch. of Mech. 23 No. 4 (1971) 517–533

    Google Scholar 

  6. Valanis, K. C.: On the uniqueness of solution, of the initial value problem in softening materials. J. Applied Mechanics. 52 (1985) 649–653

    Google Scholar 

  7. Akai, K.; Adachi, T.; Nishi, K.: Mechanical properties of soft rocks. Proc. 9th Int. Conf. Soil Mech. Found. Eng. Tokyo. Balkema. Vol. 1 (1977) 7–10

    Google Scholar 

  8. Nayak, G. C.; Zienkiewicz, O. C.: Elasto-plastic stress analysis. A generalization for various constitutive relations including strain softening. Int. J. Numerical Methods in Engineering. 5 (1972) 113–135

    Google Scholar 

  9. Prevost, J. H.; Hoeg, K.: Soil mechanics, and plasticity analysis of strain softening. Geotechnique. 25 No. 2 (1975) 279–297

    Google Scholar 

  10. Bannerjee, P. K.; Stipho, A. S.: An elasto-plastic model for undrained behavior of heavily over-consolidated clays, short communication. Int. J. Numerical, and Analytical Methods in Geomechanics. 3 (1979) 97–103

    Google Scholar 

  11. Read, H. E.; Hegemier, G. P.: Strain-softening of rock, soil and concrete—a review article. Mech. Mat. 3 No. 4 (1984) 271–294

    Google Scholar 

  12. Sandler, I. S.: Strain-softening for static and dynamic problems. Proc. Symp. on Constitutive Equations: Marco and Computational Aspects ASME. Winter Annual Meeting. New Orleans. Ed. by William, K. J. ASME (1986) 217–231

  13. Truesdell, C.; Noll, W.: Non-linear field theories of mechanics. Ed. by Flugge. III/3. Springer (1965) 36–48

  14. Bazant, Z. P.: Nonlocal continuum damage, localization instability and convergence. J. Appl. Mech. ASME 55 (1988) 287–293

    Google Scholar 

  15. Bazant, Z. P.; Belytschko, T. B.: Strain.-softening continuum damage: localization and size effect. In: Desai, C. S. et al. Proc. Int. Conf. on Constitutive Laws for Engineering Materials. Vol. 1. pp. 11–33. Tucson: Elsevier 1987

    Google Scholar 

  16. Bazant, Z. P.; Lin, F. B.; Pijaudier-Cabot, G.: Yield limit degradation: nonlocal continuum with local strain. In: Onate, E. et al., Proc. Int. Conf. on Computational Plasticity, pp. 1757–1779. Barcelona: University of Swansea 1987

    Google Scholar 

  17. Stricklin, J. A.; Haisler, W. E. and Von Riesemann, W. A.: Evaluation of solution procedure for materia and/or geometrically nonlinear structural analysis. AIAA Journal. Vol. 11 No. 3 (1973) 292–299

    Google Scholar 

  18. Frantziskonis, G.; Desai, C. S.: Constitutive model with strain softening. Int. J. Solid and Structures. Vol. 23 No. 6 (1987) 733–750

    Google Scholar 

  19. Frantziskonis, G.; Desai, C. S.: Analysis of a strain softening constitutive model. Int. J. Solid and Structures. Vol. 23 No. 6 (1987) 751–767

    Google Scholar 

  20. Takayasu, H.: A deterministic model of fracture. Prog. Theor. Phys. Vol. 74, No. 6 (1985) 1343–1345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, T., Oka, K.F. & Gifu, A.Y. A finite element analysis of strain localization for soft rock using a constitutive equation with strain softening. Arch. Appl. Mech. 61, 183–191 (1991). https://doi.org/10.1007/BF00788052

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00788052

Keywords

Navigation