Archive of Applied Mechanics

, Volume 65, Issue 2, pp 99–109 | Cite as

Stability of bars made of linear elastic materials with voids

  • A. D. Drozdov


Dynamic stability of an elastic bar with voids is considered. Using the Lyapunov approach some new sufficient stability conditions are obtained and explicit expressions for the critical load are derived.

Key words

Bars voids viscoelasticity stability critical load 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arutyunyan, N. Kh.;Drozdov, A. D.;Kolmanovskii, V. B.: Stability of viscoelastic bodies and elements of constructions. Advances in Science and Technology of VINITI. Ser. Mech. of Deformable Solids 19 (1987) 3–75Google Scholar
  2. 2.
    Ciarletta, M.;Scalia, A.: On some theorems in the linear theory of viscoelastic materials with voids. J. Elasticity 25 (1991) 149–158Google Scholar
  3. 3.
    Cowin, S. C.: A note on the problem of pure bending for a linear elastic material with voids. J. Elasticity 14 (1984) 227–233Google Scholar
  4. 4.
    Cowin, S. C.: The stresses around a hole in a linear elastic material with voids. Q. J. Mech. Appl. Math. 37 (1984) 441–465Google Scholar
  5. 5.
    Cowin, S. C.: The viscoelastic behavior of linear elastic materials with voids. J. Elasticity 15 (1985) 185–191Google Scholar
  6. 6.
    Cowin, S. C.;Nunziato, J. W.: Linear elastic materials with voids. J. Elasticity 13 (1983) 125–147Google Scholar
  7. 7.
    Cowin, C. S.;Puri, P.: The classical pressure vessel problems for linear elastic materials with voids. J. Elasticity 13 (1983) 157–163Google Scholar
  8. 8.
    Cristensen, R. M.: Theory of viscoelasticity. An introduction. New-York: Academic Press 1982Google Scholar
  9. 9.
    Drozdov, A. D.;Lymzina, A. V.: Asymptotic behavior of critical load in the stability problems for elastic bodies. Soviet Phys. Doklady 34 (1989) 39–41Google Scholar
  10. 10.
    Drozdov, A. D.; Kolmanovskii, V. B.; Velmisov, P. A.: Stability of viscoelastic systems. Saratov Univ. Press 1991Google Scholar
  11. 11.
    Dwight, H. B.: Tables of integrals and other mathematical data. New-York: The Macmillan Company 1961Google Scholar
  12. 12.
    Eringen, A. C.;Edelen, D. G. B.: On nonlocal elasticity. Int. J. Engng. Sci. 10 (1972) 233–248Google Scholar
  13. 13.
    Gantmacher, F. R.: The theory of matrices, Vol. 2. New-York: Chelsea Publishing 1960Google Scholar
  14. 14.
    Goodman, M. A.;Cowin, S. C.: A continum theory for granular materials. Arch. Rational Mech. Anal. 44 (1972) 249–265Google Scholar
  15. 15.
    Naimark, M. A.: Linear differential operators. New-York: Frederick Ungar Publishing Co. 1967Google Scholar
  16. 16.
    Novozhilov, V. V.: The theory of thin shells. Groningen: Noordhoff 1959Google Scholar
  17. 17.
    Nunziato, J. W.;Cowin, S. C.: A nonlinear theory of elastic materials with voids. Arch. Rational Mech. Anal. 72 (1979) 175–201Google Scholar
  18. 18.
    Puri, P.;Cowin, S. C.: Plane waves in linear elastic materials with voids. J. Elasticity 15 (1985) 167–183Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A. D. Drozdov
    • 1
  1. 1.Institute for Industrial MathematicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations