Skip to main content
Log in

Shock compressibility of CuI and TlCl

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The shock compressibility of the metal halides CuI and TlCl is investigated experimentally. A discontinuity on the of copper iodide at a shock-load compressibility curve amplitude of 110 kbar is recorded by the reflection method and is shown to be due to disproportionation of the compound at the shock wavefront. The shock-wave characteristics of the high- and low-pressure phases are obtained. The compressibility curve of TICI is found to be smooth in the given range of load parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. A. Blancha, N. Christenaen, and M. Cardona, “Electronic structure of the high-pressure modifications of CuCl, CuBr, and CuI,” Phys. Rev.,B33, 2413 (1986).

    Google Scholar 

  2. R. Schock and S. Katz, “High pressure study of AgI: diffusion in a pressure gradient,” J. Phys. Chem. Sol.,28, 1985 (1967).

    Google Scholar 

  3. E. Yu. Tonkov, Phase Transformations of Compounds at High Pressure [in Russian], Metallurgiya, Moscow (1988).

    Google Scholar 

  4. L. S. Al'tshuler, K. K. Krupnikov, B. N. Ledenev, et al., “Dynamic compressibility and equation of state of iron at high pressure,” Zh. Éksp. Teor. Fiz.,34, 874 (1958).

    Google Scholar 

  5. L. V. Al'tshuler, A. A. Bakanova, I. P. Dudoladov, et al., “Shock adiabatics of metals. New data, statistical analysis, and general laws,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 3 (1981).

    Google Scholar 

  6. A. Ruoff, “Linear shock-velocity—particle-velocity relationship,” J. Appl. Phys.,38, 4976 (1967).

    Google Scholar 

  7. D. Steinberg “Some observations regarding dependence of the bulk modulus,” J. Phys. Chem. Sol.,43, 1173 (1982).

    Google Scholar 

  8. S. S. Batsanov “Metallization of inorganic pressure,” Zh. Neorg. Khim.36, 2243 (1991).

    Google Scholar 

  9. E. Skelton, S. Qadri, A. Webb, et al., “Pressure-induced disproportionation in CuBr,” Phys. Lett.,A94, 441 (1993).

    Google Scholar 

  10. G. B. Bokii, Introduction to Crystal Chemistry [in Russian], Moscow Univ. (1954), pp. 356, 378.

  11. J. Donohue, The Structure of the Elements, Wiley Interscience, New York-London (1974).

    Google Scholar 

  12. S. S. Batsanov, M. F. Gogulya, M. A. Brazhnikov, et al., “Shock compression of reacting materials in tin—chalcogen system,” Khim. Fiz.,10, 1699 (1991).

    Google Scholar 

  13. S. V. Popova, N. R. Serebryanaya, and S. S. Kabalkina “Decomposition of cuprous oxide at high pressure and temperature,” Geokhimiya, No. 10, 959 (1963).

    Google Scholar 

  14. M. van Thiel (ed.), Compendium of Shock Wave Data, Lawrence Livermore National Laboratory, Livermore, CA (1977).

    Google Scholar 

Download references

Authors

Additional information

VNIIFTRI Scientific Production Combine. Translated from Fizika Goreniya i Vzryva, Vol. 30, No. 1, pp. 122–125, January–February, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batsanov, S.S., Maksimov, I.I., Simakov, G.V. et al. Shock compressibility of CuI and TlCl. Combust Explos Shock Waves 30, 122–125 (1994). https://doi.org/10.1007/BF00787895

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00787895

Keywords

Navigation