Skip to main content
Log in

Transition from combustion to detonation in a gaseous hydrocarbon-air mixture

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The transition of slow combustion of a hydrocarbon—air mixture to self-sustaining detonation is investigated experimentally in a model tube with the mixture ignited at the closed end. Various mechanisms of the onset of detonation are discussed, along with the transition of the resulting strong detonation to self-sustainment. The influence of a mechanical obstacle placed at the end of the transition zone on the stabilization of the detonation starting point and the shortening of the transition length is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. K. I. Shchelkin and Ya. K. Troshin, Gas Dynamics of Combustion [in Russian], Izd. AN SSSR, Moscow (1963).

    Google Scholar 

  2. Ya. B. Zel'dovich and A. S. Kompaneets, Theory of Detonation [in Russian], Gostekhizdat, Moscow (1955).

    Google Scholar 

  3. L. N. Khitrin, Physics of Combustion and Explosion [in Russian], Izd. Mosk. Univ., Moscow (1957).

    Google Scholar 

  4. B. Lewis and G. von Elbe, Combustion, Flames, and Explosions of Gases, Academic Press, New York (1961).

    Google Scholar 

  5. G. D. Salamandra, T. V. Bazhenova, S. G. Zaitsev, et al., Methods of Investigation of Short-Time Processes and Their Application to the Study of the Evolution of a Detonation Wave [in Russian], Izd. AN SSSR, Moscow (1960).

    Google Scholar 

  6. P. A. Urtiew and A. K. Oppenheim, “Experimental observation of the transition to detonation in an explosive gas,” Proc. R. Soc. London Ser. A,295, 13 (1966).

    Google Scholar 

  7. A. K. Oppenheim, A. J. Laderman, and P. A. Urtiew, “On the onset of retonation,” Combust. Flame.6, 193 (1962).

    Google Scholar 

  8. R. I. Soloukhin, “Transition from combustion to detonation in gases”, Prikl. Mekh. Tekh. Fiz., No. 4, 128–132 (1961).

    Google Scholar 

  9. A. N. Voinov, “Experimental study of detonation in engines,” in: Combustion in Vehicular Piston Engines [in Russian], E. A. Chudakov (ed.), Izd. AN SSSR, Moscow (1951), p. 112.

    Google Scholar 

  10. A. S. Sokolik, “Fundamentals of the theory of detonation in engines,” in: Combustion in Vehicular Piston Engines [in Russian], E. A. Chudakov (ed.), Izd. AN SSSR, Moscow (1951), p. 185.

    Google Scholar 

  11. S. M. Frolov, B. E. Gel'fand, and S. A. Tsyganov, “Spontaneous combustion regimes,” Fiz. Goreniya Vzryva,28, No. 5, 13–27 (1992).

    Google Scholar 

  12. M. A. Nettleton, Gaseous Detonations: Their Nature, Causes, and Control, Chapman and Hall, New York (1987).

    Google Scholar 

  13. V. V. Mitrofanov (ed.), Problems in the Utilization of Detonation in Technological Processes [in Russian], (collected scientific papers), IGiL SO AN SSSR, Novosibirsk (1986).

    Google Scholar 

  14. K. N. Shavshev, V. N. Tovchigrechko, L. Yu. Sobolev, et al., “Experimental and theoretical studies of strong acoustic pulses in the atmosphere,” Akust. Zh.,34, No. 2, 232–236 (1988).

    Google Scholar 

  15. A. P. Boichenko and N. N. Smirnov, “Dynamics of the interaction of a hot-gas detonation drilling tool with soils,” in: Problems in the Interaction Dynamics of Deformable Media [in Russian], Izd. An Arm. SSR, Erevan (1984), pp. 75–79.

    Google Scholar 

  16. A. A. Borisov and S. A. Loban', “Detonation limits of hydrocarbon—air mixtures in tubes,” Fiz. Gorenlya Vzryva,13, No. 5, 729–733 (1977).

    Google Scholar 

  17. R. P. Lindstedt and H. J. Michels, “Deflagration to detonation transition in mixtures of alkane LNG/LPG constitutents with O2/N2,” Combust. Flame,72, No. 1, 63–72 (1988).

    Google Scholar 

  18. R. P. Lindstedt and H. J. Michels, “Deflagration to detonation transitions and strong deflagrations in alkane and alkene air mixtures,” Combust. Flame,76, No. 2, 169–181 (1989).

    Google Scholar 

  19. A. A. Vasil'ev, “Optimization of the conditions of combustion-to-detonation transition for gas mixtures,” in: Proceedings of an All-Union Symposium (Alma-Ata, October 21–25, 1991) [in Russian], Novosibirsk (1991), pp. 36–37.

  20. V. F. Klimkin, A. N. Papyrin, and R. I. Soloukhin, Optical Methods for Recording Short-Time Processes [in Russian], Nauka, Novosibirsk (1980).

    Google Scholar 

  21. V. V. Mitrofanov, Theory of Detonation [in Russian], Novosibirsk (1982).

  22. K. P. Stanyukovich (ed.), Physics of Explosions [in Russian], Nauka, Moscow (1975).

    Google Scholar 

Download references

Authors

Additional information

State University, Moscow. Translated from Fizika Goreniya i Vzryva, Vol. 30, No. 1, pp. 78–86, January–February, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, N.N., Tyurnikov, M.V. Transition from combustion to detonation in a gaseous hydrocarbon-air mixture. Combust Explos Shock Waves 30, 77–85 (1994). https://doi.org/10.1007/BF00787889

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00787889

Keywords

Navigation