Archive of Applied Mechanics

, Volume 67, Issue 1–2, pp 81–95 | Cite as

Green functions for an incompressible linearly nonhomogeneous half-space

  • G. Muravskii
Originals

Summary

Time-harmonic vibrations of an incompressible half-space having shear modulus linearly increasing with depth are studied. The half-space is subjected to a surface load which has vertical or hovizontal direction. The general solution of the time-harmonic, in the vertical direction nonhomogeneous problem is constructed for arbitrary angular distribution in the horizontal plane. Numerical results concerning surface displacements due to a point force are given for the case of nonzero shear modulus at the surface. These results show that nonhomogeneity can considerably increase amplitudes at large distances from the applied force.

Key words

time-harmonic vibration nonhomogeneous half-space incompressibility surface load linearly varying shear modulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gibson, R. E.: Some results concerning displacements and stresses in a non-homogeneous elastic half-space. Geotechnique 17 (1967) 58–67Google Scholar
  2. 2.
    Awojobi, A. O.: Vertical vibration of a rigid circular foundation on Gibson soil. Geotechnique 22 (1972) 333–343Google Scholar
  3. 3.
    Awojobi, A. O.: Vibration of rigid bodies on non-homogeneous elastic semi infinite elastic media. Quart. J. Mech. Appl. Math. 26 (1973) 483–498Google Scholar
  4. 4.
    Hook, J. F.: Separation of the vector wave equation of elasticity for certain types of inhomogeneous isotropic media. J. Acoust. Soc. Am. 33 (1961) 302–313Google Scholar
  5. 5.
    Hook, J. F.: Contributions to a theory of separability of the vector wave equation for inhomogeneous media. J. Acoust. Soc. Am. 34 (1962) 946–953Google Scholar
  6. 6.
    Alverson, R. C.;Gair, F. C.;Hook, J. F.: Uncoupled equations of motion in inhomogeneous elastic media. Bull. Seismol. Soc. Am. 53 (1963) 1023–1030Google Scholar
  7. 7.
    Karlsson, T.;Hook, J. F.: Lamb's problem for an inhomogeneous media with constant velocities of propagation. Bull. Seismol. Soc. Am. 53 (1963) 1007–1022Google Scholar
  8. 8.
    Rao, C. R. A.: Separation of the stress equations of motion in nonhomogeneous elastic media. J. Acoust. Soc. Am. 41 (1967) 612–614Google Scholar
  9. 9.
    Rao, C. R. A.: On the integration of the axisymmetric stress equations of motion for nonhomogeneous elastic media. Arch. Mech. Stos. 22 (1970) 63–73Google Scholar
  10. 10.
    Rao, C. R. A.;Goda, M. A. A.: Generalization of Lamb's problem to a class of inhomogeneous elastic half-spaces. Proc. Roy. Soc. London A 359 (1978) 93–110Google Scholar
  11. 11.
    Vrettos, C.: In-plane vibration of soil deposits with variable shear modulus: I. Surface waves. Int. J. Numer. Anal. Methods Geomech. 14 (1990) 209–222Google Scholar
  12. 12.
    Vrettos, C.: In-plane vibration of soil deposits with variable shear modulus: II. Line load. Int. J. Numer. Anal. Methods Geomech. 14 (1990) 649–662Google Scholar
  13. 13.
    Vrettos, C.: Time-harmonic Boussinesq problem for a continuously non-homogeneous soil. Earthquake Eng. Struct. Dyn. 20 (1991) 961–977Google Scholar
  14. 14.
    Stoneley, R.: The transmission of Rayleigh waves in a heterogeneous medium. Geophysical Suppl. to the monthly notices of the Roy. Astron. Soc. London 3 (1934) 222–232Google Scholar
  15. 15.
    Vardoulakis, I.: Surface waves in a half-space of submerged sand. Earthquake Eng. Struct. Dyn. 9 (1981) 329–342Google Scholar
  16. 16.
    Wolf, J. P.: Dynamic soil-structure interaction. Englewood Cliffs: Prentice-Hall 1985Google Scholar
  17. 17.
    Wass, G.;Riggs, H. R.;Werkle, H.: Displacements solutions for dynamic loads in transversely-isotropic stratified media. Earthquake Eng. Struct. Dyn. 13 (1985) 329–342Google Scholar
  18. 18.
    Abramowitz, M.;Stegun, I. A.: Handbook of mathematical functions. New York: Dover Publ. 1965Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • G. Muravskii
    • 1
  1. 1.Faculty of Civil EngineeringTECHNIONHaifaIsrael

Personalised recommendations