Skip to main content
Log in

Explosion activation of quench-hardened ZrO2-Y2O3 ceramic submicron powders

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The subject investigated was the behavior of a nanocrystallite submicron ZrO2−Y2O3 ceramic which was obtained by the plasma-chemical synthesis method using explosive loading. It was shown that the dynamic action results in a qualitative change in the powder particle morphology, a stored deformation energy increase and a phase transition which promotes the activation of the sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Scott, “Zirconia rich end of the ZrO2−Y2O3 diagram,” J. Mater. Sci.,10, 1527 (1975).

    Article  Google Scholar 

  2. V. E. Panin, V. F. Nesterenko, S. N. Kul'kov et al., “Fragmentation of submicron ceramic powders during pulsed loading,” Fiz. Goren. Vzryva,27, No. 4, 140 (1991).

    Google Scholar 

  3. V. F. Nesterenko, V. E. Panin, S. N. Kulkov et al., “Modification of submicron ceramics under pulse loading,” High Press. Res.,10, No. 5-6, 791 (1992).

    Google Scholar 

  4. R. Pryummer, Explosion Treatment of Powdered Materials [Russian translation], Mir, Moscow (1990).

    Google Scholar 

  5. V. F. Nesterenko, Pulsed Loading of Heterogeneous Materials [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  6. F. F. Lange, “Size effects associated with the thermodynamics of constrained transformations,” J. Mater. Sci.,17, 225 (1982).

    Article  ADS  Google Scholar 

  7. L. M. Lityagina, S. S. Kabalkina, T. A. Pashkina et al., “Polymorphism at high pressure,” Fiz. Tverd. Tela,20, No. 11, 3475 (1978).

    Google Scholar 

  8. Jue J. Fong and A. V. Virkar, “Fabrication, microstructural characterization and mechanical properties of polycrystalline t'zirconia,” J. Am. Ceram. Soc.,73, 3650 (1990).

    Article  Google Scholar 

  9. D. T. Lively and P. Murray, “Thermodynamics of monoclinic-tetragonal transition of zirconia,”ibid.,39, 363 (1956).

    Article  Google Scholar 

  10. E. D. Whitney, “Effect of pressure on monoclinic-tetragonal transition of zirconia. Thermodynamics,”ibid.,45, 612 (1962).

    Article  Google Scholar 

  11. T. Masaki and K. Sinjo, “Mechanical properties of highly toughened ZrO2−Y2O3,” Ceram. Int.,13, 109 (1987).

    Article  Google Scholar 

  12. M. E. Kipp and D. E. Grady, “Elastic wave dispersion in high-strength ceramics,” in: Shock Compression of Condensed Matter, Elsevier Sci. Publ. B. V. (1992), p. 459.

  13. V. F. Nesterenko, T. S. Teslenko, V. A. Simonov et al., “Formation of new materials from ceramic powders with nanocrystallite structure using high-energy action,” IGIL Report, June 1993.

  14. V. A. Dubok, M. I. Kabanova, S. A. Nedil'ko et al., “Effect of the synthesis method on the properties of partially stabilized zirconium dioxide powders,” Poroshk. Metall., No. 8, 56 (1988).

    Google Scholar 

Download references

Authors

Additional information

M. A. Lavrent'ev Hydrodynamics Institute, Novosibirsk. Institute of Strength and Material Physics, Tomsk. Translated from Fizika Goreniya i Vzryva, Vol. 29, No. 6, pp. 66–72, November–December, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kul'kov, S.N., Nesterenko, V.F., Bondar', M.P. et al. Explosion activation of quench-hardened ZrO2-Y2O3 ceramic submicron powders. Combust Explos Shock Waves 29, 728–733 (1993). https://doi.org/10.1007/BF00786857

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00786857

Keywords

Navigation