Skip to main content
Log in

Modelling of the micromechanical behaviour of unidirectional fibre-reinforced ceramics by the example of SiC/SiC

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

The modelling of the mechanical properties of a substructure, based on the properties of the individual phases and their interactions, is presented on the example of the unidirectional SiC fibre-reinforced SiC composite. The substructure is selected in such a way that the total structure can be modelled from a wide number of substructures. The numerical evaluation of the model is accomplished by means of the finite element method (FEM). Finally, in numerical simulations of a particular example, the statistically verified events of damage in the substructure are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stinton, D. P.;Caputo, A. J.;Lowden, A. L.: Synthesis of fiber-reinforced SiC composites by chemical vapor infiltration. Ceram. Bull. 65 (1986) 347–350

    Google Scholar 

  2. Köberle, H.;Mühlratzer, A.;Peetz, K.: Properties of ceramic matrix composites. In: Ziegler, G.; Hausner, H. (eds.) Euro-Ceramics II — Vol. 2: Structural Ceramics and Composites, pp. 1667–1671. Köln: DKG 1993

    Google Scholar 

  3. Sutcu, M.: Weibull statistics applied to fiber failure in ceramic composites and work of fracture. Acta Metallurgica 37 (1989) 651–661

    Google Scholar 

  4. Kaliszky, S.: Plastizitätslehre — Theorie und technische Anwendungen. Düsseldorf: VDI-Verlag 1984

    Google Scholar 

  5. DeBorst, R.;Nauta, P.: Non-orthogonal cracks in a smeared finite-element model. Eng. Comput. 2 (1985) 35–46

    Google Scholar 

  6. Li, F. Z.;Shih, C. F.;Needleman, A.: A comparison of method for calculating energy release rates. Engng. Fract. Mech. 21 (1985) 405–421

    Google Scholar 

  7. Zienkiewicz, O. C.: Methode der finiten Elemente. München: C. Hanser 1984

    Google Scholar 

  8. Phillips, D. C.: Fibre reinforced ceramics. In: Davidge, R. W. (ed.) Survey of the technological requirements for high-temperature materials R&D — Section 3: Ceramics composites for high-temperature engineering applications, pp. 48–73. Luxembourg: Commission of The European Communities 1985

    Google Scholar 

  9. Prewo, K. M.;Brennan, J. J.;Layden, G. K.: Fiber-reinforced glasses and glass ceramics for high-performance applications. Ceram. Bull. 65 (1986) 305–313

    Google Scholar 

  10. Chen, T.;Dvorak, G. J.;Benveniste, Y.: Stress fields in composites reinforced by coated cylindrically orthotropic fibres. Mech. Mater. 9 (1990) 17–32

    Google Scholar 

  11. Rouby, D.: Verbundwerkstoffe aus keramischen Fasern und keramischen Matrizes. Ceramic Forum International, Bericht der DKG 66/5–6 (1989) 208–216

    Google Scholar 

  12. Wantzen, B.: SiCarbid- und Siliziumnitrid-Fasern für den Hochtemperaturbereich. Mag. Neue Werkstoffe 3 (1990) 24–25

    Google Scholar 

  13. Hoffman, O.: The brittle strength of orthotropic materials. J. Comp. Mater. 1 (1967) 200–206

    Google Scholar 

  14. Aboudi, J.: Micromechanical analysis of fibrous composites with Coulomb frictional slippage between the phases. Mech. Mater. 8 (1989) 103–115

    Google Scholar 

  15. Luh, E. Y.;Evans, A. G.: High-temperature mechanical properties of a ceramic matrix composite. J. American Ceramic Society 70 (1987) 466–469

    Google Scholar 

  16. Cooper, G. A.;Pigott, M. R.: Cracking and fracture in composites. In: Taplin, D. M. R.(ed.) Proc. Int. Conf. On Fracture 4, Waterloo 1977, pp. 557–605. New York: Pergamon Press 1978

    Google Scholar 

  17. Fitzer, E.: Fibre-reinforced ceramics and glasses. In: Somiya, S.; Saito, S. (eds.) Proc. Int. Symp. of factors in Desification and Sintering of Oxide and Non-oxide Ceramics, Japan, 1978, pp. 618–673. Tokio: Gakujutsu Bonken Fikyu-Kai 1979

    Google Scholar 

  18. Ziegler, G.: Hochfeste faserverstärkte Verbundwerkstoffe mit keramischer Matrix. Symposiumsband BMFT-Materialforschung, Hamm 1988

  19. Ziegler, G.: Keramik — eine Werkstoffgruppe mit Zukunft. Metall 41 (1987) 682–695

    Google Scholar 

  20. Ziegler, G.: Entwicklungstendenzen der Hochleistungskeramik. Ceramic Forum International—Bericht der DKG 68/3 (1991) 72–79

    Google Scholar 

  21. Navarre, G.;Rouby, D.;Fantozzi, G.: Fracture behaviour related to microstructure in SiC−SiC and C−SiC composites. In: DeWith, G.; Terpstra, R. A.; Metselaar, R. (eds.) Euro-Ceramics I-Vol. 3: Engineering Ceramics, pp. 448–452. London: Elsevier Applied Science 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismar, H., Reinert, U. Modelling of the micromechanical behaviour of unidirectional fibre-reinforced ceramics by the example of SiC/SiC. Arch. Appl. Mech. 66, 34–44 (1995). https://doi.org/10.1007/BF00786687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00786687

Key words

Navigation