Skip to main content
Log in

Thermomechanical simulation of underwater welding processes

Thermomechanische Simulation des Unterwasser-Schweißens

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

The underwater welding problem has been formulated for the thermoelastic body as the sequence of the thermal free-boundary problem and the thermomechanical contact problem. The thermal free-boundary problem is discussed due to accounting for phase transformations. The contact problem is considered to establish interactions between a weld and elements of weldment and residual stresses inside the weldment.

Übersicht

Das Unterwasser-Schweißen wird als Folge eines thermischen Problems für einen thermoelastischen Körper mit freien Oberflächen und eines thermomechanischen Kontaktproblems formuliert. Das thermische Problem mit freien Oberflächen wird zwecks Berücksichtigung von Phasentransformationen erörtert. Das Kontaktproblem wird behandelt, um Wechselwirkungen zwischen Schweißnaht, verschweißten Teilen und Eigenspannungen zu ergründen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bathe, K. J.: Finite element procedures. Englewood Cliffs: Prentice-Hall 1982

    Google Scholar 

  2. Irons, B. M.: Engineering application of numerical integration in stiffness method. J. AIAA 14, (1966) 2035–2037

    Google Scholar 

  3. Müller, I.: Thermodynamics. Boston: Pitman Publ. 1985

    Google Scholar 

  4. Ronda, J.: Underwater welding problem formulation and numerical solution by means of TF-3D FEM package (für die Teilbearbeitung des Teilprojektes A4 im SFB 264). Hamburg: Technische Universität Hamburg-Harburg 1989

    Google Scholar 

  5. Ronda, J.: Nonstationary contact problems. Warszawa: IFTR Reports 38 (1990)

  6. Taig, I. C.: Structural analysis by the matrix displacement method. English Electric Aviation Report S017 (1961)

  7. Wilmanski, K.: Thermodynamic foundations of thermoelasticity. In: Lebon, G.; Perzyna, P. (ed.) Recent developments in thermodynamics of solids, pp 1–92 Wien, New York: Springer 1980

    Google Scholar 

  8. Wilmanski, K.: Propagation of the interface in the stress-induced austenite-martensite transformation. Ing. Arch. 53 (1983) 291–301

    Google Scholar 

  9. Wilmanski, K.: Modele Termodynamiczne Osrodkow Ciaglych. Materialy dla Studiow Doktoranckich i Podyplomowych. Poznan: Politechnika Poznanska 11 (1985)

    Google Scholar 

  10. Zienkiewicz, O. C.: The finite element method. London: McGraw-Hill 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. rer. nat. Dr. naut. h. c. Horst Lippmann on the occasion of his 60th, birthday on May 7, 1991

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronda, J., Mahrenholtz, O. & Hamann, R. Thermomechanical simulation of underwater welding processes. Arch. Appl. Mech. 62, 15–27 (1992). https://doi.org/10.1007/BF00786678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00786678

Keywords

Navigation