Combustion, Explosion and Shock Waves

, Volume 27, Issue 5, pp 628–634 | Cite as

Computation of explosive interaction in a molten metal-coolant system using a thermal detonation model

  • B. E. Gel'fand
  • A. M. Bartenev
  • S. M. Frolov


Molten Metal Detonation Wave Metal Drop Local Sound Speed Steam Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. J. Board, R. W. Hall, and R. S. Hall, “Detonation of fuel coolant explosions”, Nature, No. 254, 319 (1975).CrossRefADSGoogle Scholar
  2. 2.
    Ya. B. Zel'dovich, and A. S. Kompaneets, The Theory of Detonation [in Russian], Gostekhizdat, Moscow (1955).Google Scholar
  3. 3.
    A. Sharon, and S. G. Bankoff, “Existence of steady supercritical plane thermal detonations”, Int. J. Heat Mass Transfer,24, No. 10, 1561 (1981).CrossRefGoogle Scholar
  4. 4.
    W. Schwalbe, M. Burger, and H. Unger, “Investigation of Fry-Robinson experiments by means of a thermal detonation model”, CSNI/OESD Joint Interpretation Exercise on Fuel-Coolant Interaction, Karlsruhe (1980).Google Scholar
  5. 5.
    C. Carachalios, M. Burger, and H. Unger, “A transient two-phase model to describe thermal detonations based on hydrodynamic fragmentation”, International Meeting on Light-Water Reactor Severe Accident Evaluation, Cambridge (1983).Google Scholar
  6. 6.
    C. Carachalios, M. Burger, and H. Unger, “Triggering and escalation behavior of thermal detonations”, 23rd ASME/AICE/ANS National Heat Transfer Conference, Denver (1985).Google Scholar
  7. 7.
    W. Condiff, “Duane contributions concerning quasi-steady propagation of thermal detonations through dispersions of hot liquid fuel in cooler volatile liquid coolants”, Int. J. Heat Mass Transfer,25, No. 1, 87 (1982).CrossRefGoogle Scholar
  8. 8.
    Ya. B. Zel'dovich, B. E. Gel'fand, A. A. Borisov, et al., “Reaction zone in low velocity detonation of gases in rough-walled pipes”, Khim. Fiz.,4 No. 2, 279 (1985).Google Scholar
  9. 9.
    S. M. Frolov, A. N. Polenov, B. E. Gel'fand, et al., “Peculiarities of detonation in systems with random losses”, Khim. Fiz.,5, No. 7, 978 (1986).Google Scholar
  10. 10.
    M. Burger, D. S. Kim, W. Schwalbe, et al., “Two-phase description of hydrodynamic fragmentation processes within thermal detonation waves”, Trans. ASME,106, 728 (1984).Google Scholar
  11. 11.
    B. E. Gel'fand, S. A. Gubin, S. M. Kogarko, et al., “Fracture of cryogenic liquid drops by shock waves”, Dokl. Akad. Nauk SSSr,20, No. 6 1113 (1972).Google Scholar
  12. 12.
    W. G. Reinecke, and W. L. Mckay, “free flight measurement of catastrophic water drop breakup” AIAA J.,14, No. 11, 1635 (1976).ADSGoogle Scholar
  13. 13.
    R. I. Nigmatulin, Dynamics of Multi-Phase Media [in Russian], Vols. 1, 2, Nauka, Moscow (1987).Google Scholar
  14. 14.
    K. P. Stanyukovich, and F. A. Baum, The Physics of Explosions [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  15. 15.
    E. V. Riske, and A. F. Kapustinskii (compilers), Thermal Constants for Inorganic Materials [in Russian], AN SSSR, Moscow (1949).Google Scholar
  16. 16.
    I. S. Radovskii, The Speed of Sound in Two-Phase Steam-Water Mixtures: Collected Data [in Russian], Gosstandart, All-Union Scientific Resarch Center—State Standard Reference Data Service, Moscow Institute of Engineering Physics (1982).Google Scholar
  17. 17.
    D. L. Frost, “Dynamics of explosive boiling of a droplet”, Phys. Fluids,31, No. 9, 2554 (1988).CrossRefADSGoogle Scholar
  18. 18.
    H. Schlichting, Boundary-Layer Theory [Russian translation], Inostr. Lit., Moscow (1954).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • B. E. Gel'fand
  • A. M. Bartenev
  • S. M. Frolov

There are no affiliations available

Personalised recommendations