Advertisement

Combustion, Explosion and Shock Waves

, Volume 18, Issue 1, pp 39–45 | Cite as

Investigation of the mechanism of chemical ionization accompanying high-temperature oxidation of methane in shock waves

  • G. S. Aravin
  • P. A. Vlasov
  • Yu. K. Karasevich
  • E. V. Makolkin
  • M. G. Neigauz
Article

Conclusions

The ionization of methane-oxygen mixture behind reflected shock waves was studied experimentally and its kinetic parameters were determined: the rate of ionization, electron concentration, and electron yield per consumed methane molecule.

The results of a numerical kinetic calculation of the electron concentration profile as a function of time, as well as the electron yield, describe satisfactorily the experimental data obtained with the help of a uhf interferometer with high spatial resolution.

It was established that the rate of chemical ionization of a methane-oxygen mixture exceeds by many orders of magnitude the rate of ionization of the trace sodium impurities. This makes it possible to study it in hydrocarbon systems in the presence of unavoidable alkali contaminants under experimental conditions.

Keywords

Methane Hydrocarbon Shock Wave Kinetic Parameter Concentration Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. N. Kondrat'ev, Kinetics of Chemical Gas Reactions [in Russian], Izd. Akad. Nauk SSSR, Moscow (1958).Google Scholar
  2. 2.
    J. Lawton and F. Weinberg, Electrical Aspects of Combustion, Oxford University Press (1969).Google Scholar
  3. 3.
    S. Matsuda and D. Gutman, J. Chem. Phys.,53, 3324 (1970);54, 453 (1971).Google Scholar
  4. 4.
    V. Ya. Basevich and S. M. Kogarko, Izv. Akad. Nauk SSSR, Ser. Khim.,6, 1404 (1979).Google Scholar
  5. 5.
    G. S. Aravin, Yu. K. Karasevich, and A. N. Shumeiko, Fiz. Goreniya Vzryva,13, No. 5, 721 (1977).Google Scholar
  6. 6.
    V. P. Glushko (ed.), Thermodynamic Properties of Individual Substances, Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  7. 7.
    D. G. Zavarin, V. V. Rozhdestvenskii, and G. K. Tumakaev, in: Diagnostics of Low-Temperature Plasma [in Russian], Nauka, Moscow (1979).Google Scholar
  8. 8.
    E. V. Makolkin, I. A. Evgafov, et al., Inventor's Certificate No. 386327, Byull. Izobret., 26 (1973).Google Scholar
  9. 9.
    M. Hill and S. Worton, Microwave Plasma Diagnostics [Russian translation], Atomizdat, Moscow (1968).Google Scholar
  10. 10.
    M. Ya. Basevich, S. M. Kogarko, and M. G. Neigauz, Izv. Akad. Nauk SSSR, Ser. Khim.,1, 42 (1976).Google Scholar
  11. 11.
    K. P. Schneider and C. Park, Phys. Fluids,18, 969 (1975).Google Scholar
  12. 12.
    V. V. Azatyan, M. G. Neigauz, et al., Kinet. Katal.,16, 577 (1975).Google Scholar
  13. 13.
    V. T. Gontkovskaya, A. G. Merzhanov, and N. I. Ozerkovskaya, in: Chemical Physics of Combustion and Explosion Processes, Kinetics of Chemical Reactions [in Russian], Chernogolovka (1977).Google Scholar
  14. 14.
    G. Pratt and I. Velman, J. Chem. Soc. Faraday Trans.,1, 1841 (1974).Google Scholar
  15. 15.
    J. Peters and C. Vinckier, 15th Symp. (International) on Combust., Pittsburgh (1974).Google Scholar
  16. 16.
    C. P. Fenimore, 12th Symp. (International) on Combust., Pittsburgh (1969).Google Scholar
  17. 17.
    V. Ya. Basevich, S. M. Kogarko, and G. A. Furman, Izv. Akad. Nauk SSSR, Ser. Khim.,7, 1406 (1971).Google Scholar
  18. 18.
    JANAF Thermochemical Tables, 2nd ed., Washington, NSRDS-NBS, 37 (1971).Google Scholar
  19. 19.
    R. Hartif, H. A. Olschevski, et al., Ber. Bunsenges Phys. Chem.,72, 1016 (1968).Google Scholar
  20. 20.
    R. Kelly and P. J. Padley, Proc. R. Soc.,A327, 345 (1972).Google Scholar
  21. 21.
    D. R. Bates, Proc. R. Soc.,A348, 427 (1976).Google Scholar
  22. 22.
    W. J. Miller, 14th Symp. (International) on Combust., Pittsburgh (1973).Google Scholar
  23. 23.
    Webb, Romas, Raket. Tekh. Kosmn.,3, No. 5, 38 (1965).Google Scholar
  24. 24.
    D. E. Jensen, Combust., Flame,18, No. 2, 217 (1972).Google Scholar
  25. 25.
    L. I. Virin, R. V. Dzhagatspanyan, et al., Ion—Molecular Reactions in Gases [in Russian], Nauka Moscow (1979).Google Scholar
  26. 26.
    A. N. Hayhurst and N. R. Telford, Nature,212, 813 (1966).Google Scholar
  27. 27.
    A. N. Hayhurst and T. N. Sugden, Proc. R. Soc.,A293, 36 (1966).Google Scholar
  28. 28.
    R. Kelly and P. J. Padley, Trans. Faraday Soc.,66, 1127 (1970).Google Scholar
  29. 29.
    A. N. Hayhurst and N. R. Telford, J. Chem. Soc. Faraday Trans. Part I,70, 1999 (1974).Google Scholar
  30. 30.
    V. Ya. Basevich, S. M. Kogarko, and G. A. Furman, Izv. Akad. Nauk SSSR, Ser. Khim.,1, 197 (1974).Google Scholar
  31. 31.
    D. M. Zallen, E. D. Hirleman, and S. L. K. Wittig, 15th Symp. (International) on Combust., Pittsburgh (1974).Google Scholar
  32. 32.
    W. J. Miller, Oxid. Combust. Rev.,3, 397 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • G. S. Aravin
  • P. A. Vlasov
  • Yu. K. Karasevich
  • E. V. Makolkin
  • M. G. Neigauz

There are no affiliations available

Personalised recommendations