Molecular Biology Reports

, Volume 5, Issue 4, pp 199–208 | Cite as

Post-synthetic fate of the translation products of messenger RNA microinjected into xenopus oocytes

  • Fred A. M. Asselbergs
Mini Review


Xenopus Oocyte Translation Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tata, J.R., The expression of the vitellogenin gene, Cell 9, 1–14 (1976).Google Scholar
  2. 2.
    Wallace, R.A. and Jared, D.W., Protein incorporation by isolated amphibian oocytes: specificity for vitellogenin incorporation. J. Cell. Biol. 69, 345–351 (1976).Google Scholar
  3. 3.
    Dehn, P.F. and Wallace, R.A., Sequestred and injected vitellogenin; alternative routes of protein processing in Xenopus ooccytes. J. Cell Biol. 58, 721–724 (1973).Google Scholar
  4. 4.
    Berridge, M.V. and Lane, C.D. Translation of Xenopus liver mRNA in Xenopus oocytes, vitellogenin synthesis and conversion to yolk platelets. Cell 8, 203–297 (1976).Google Scholar
  5. 5.
    Habener, J.F. and Kennedy, H.M. Parathyroid hormone biosynthesis: structure and function of biosynthetic precursors. Fed. Proc. 37, 2561–2566 (1978).Google Scholar
  6. 6.
    Zehavi-Willner, T. and Lane, C.D., Subcellular compartitation of albumin and globin made in oocytes under the direction of injected messenger RNA. Cell/11, 683–693 (1977).Google Scholar
  7. 7.
    Blobel, G. and Dobberstein, B. Transfer of proteins across membranes. J. Cell Biol. 67, 852–862 (1975).Google Scholar
  8. 8.
    Lane, C.D. and Knowland, J.S., The injection of RNA into living cells; the use of forg oocytes for the assay of mRNA and the study of the control of gene expression. in: Biochemistry of development. Vol. 3 (R. Weber, ed.) New York, Academic Press, pp. 145–181 (1975).Google Scholar
  9. 9.
    Asselbergs, F.A.M., van Venrooij, W.J. and Bloemendal, H., Synthesis of lens crystallins in Xenopus oocytes as determined by quantitative immunoprecipitation. Eur. J. Biochem. 87, 517–524 (1978).Google Scholar
  10. 10.
    Wallace, R.A. and Hollinger, T.G., Turnover of endogenous, micro-injected and sequestred proteins in Xenopus oocytes, Exp. Cell Res. 119, 277–287 (1979).Google Scholar
  11. 11.
    Asselbergs, F.A.M., Salden, M.H.L. and Bloemendal, H., Kinetics of synthesis and proteolytic processing of precursor polypeptides of Rauscher Leukemia Virus in frog oocytes following micro-injection of viral RNA. J. of Virology, submitted for publication.Google Scholar
  12. 12.
    Mach, B., Faust, C.F., Vassali, P. and Rungger, D. Different size of the products of the 14S light chain mRNA translated in vitro and in amphibian oocytes. Mol. Biol. Rep. 1, 3–6 (1973).Google Scholar
  13. 13.
    Beato, M. and Rungger, D. Translation of the messenger RNA for rabbit uteroglobin in Xenopus oocytes. FEBS Lett. 59, 305–309, (1975).Google Scholar
  14. 14.
    Beato, M. and Nieto, A., Translation of the mRNA for rabbit uteroglobin in cell-free systems. Eur. J. Biochem. 64, 15–25 (1976).Google Scholar
  15. 15.
    Rapoport, T.A., Thiele, B.J., Prehn, S., Marbaix, G., Cleuter, Y., Hubert, E. and Huez, G., Synthesis of carp proinsulin in Xenopus oocytes. Eur. J. Biochem 87, 229–233 (1978).Google Scholar
  16. 16.
    Kindas-Mugge, I., Lane C.D. and Kreil, G., Insect-protein synthesis in frog cells: the translation of honey bee promitellin messenger RNA in Xenopus oocytes. J. Mol. Biol. 87, 451–462 (1974).Google Scholar
  17. 17.
    Kreil, G., Suchanek, G. and Kindas-Mugge, I., Biosynthesis of a secretory polypeptide in honey bee venom glands. Intermediates detected in vivo and in vitro. Fed. Proc. 36, 2081–2088 (1977).Google Scholar
  18. 18.
    Kourides, I.A. and Weintraub, B.D., mRNA-directed biosynthesis of α-submit of thyrotropin: Translation in cell-free and whole-cell systems. Proc. Natl. Acad. Sci. USA 76, 298–302 (1979).Google Scholar
  19. 19.
    Shatkin, A.J., Banerjee, A.K. and Both, G.W., Translation of animal virus RNAs in vitro. in: Comprehensive Virology, Vol. 10 (Fraenkel Conrat H. and Wagner R.R., eds) Plenum Press, New York (1977).Google Scholar
  20. 20.
    Bertagna, X.Y., Nicholson, W.E., Sorenson, G.D., Pettengill, O.S., Mount, C.D. and Orth, D.N., Corticotropin, lipotropin and β-endorphin production by a human nonpituary tumor in culture: Evidence for a common precursor. Proc. Natl. Acad. Sci. USA 75, 5160–5164 (1978).Google Scholar
  21. 21.
    Cooper, P.D., Genetics of Pcornaviruses, in: Comprehensive Virology, Vol. 9 (Fraenkel-Conrat H. and Wagner, R.R., eds.) Plenum Press, New York, 1977.Google Scholar
  22. 22.
    Laskey, R.A., Gurdon, J.B. and Crawford, L.V. Translation of encephalomyocarditis virus RNA in oocytes of Xenopus laevis. Proc. Natl. Acad. Sci. USA 69, 3665–3669 (1972).Google Scholar
  23. 23.
    Laskey, R.A., Mills, A.D., Gurdon, J.B. and Partington, G.A., Protein synthesis in oocytes of Xenopus laevis is not regulated by the supply of mRNA. Cell 11, 345–352 (1977).Google Scholar
  24. 24.
    Shih, D.S., Shih, C.T., Kew, O., Pallansch, M., Rueckert, R. and Kaesberg, P. Cell-free synthesis and processing on the proteins of poliovirus. Proc. Natl. Acad. Sci. USA, 75, 5801–5811 (1978).Google Scholar
  25. 25.
    Pelham, H.R.B. Translation of encephalomyocarditis virus in vitro yields an active processing enzyme. Eur. J. Biochem. 85, 457–462 (1978).Google Scholar
  26. 26.
    Shih, D.S., Shih, C.T., Zimmern, D., Rueckert, R.R. and Kaesberg, P. Translation of encephalomyocarditis virus RNA in reticulocyte lysates: Kinetic analysis of the formation of virion proteins and a protein required for processing. J. Virol. 39, 472–480 (1979).Google Scholar
  27. 27.
    Bishop, J.M. Retroviruses, Ann. Rev. Biochem. 47, 35–88 (1978).Google Scholar
  28. 28.
    Eisenman, R.N. and Vogt, V.M., Biosynthesis of oncovirus proteins, Biochim. Biophys. Acta. 473, 188–239 (1978).Google Scholar
  29. 29.
    Stephenson, J.R., Devare, S.G. and Reynolds, F., Translation products of type C RNA tumor viruses, Adv. Cancer Res. 27, 1–54 (1978).Google Scholar
  30. 30.
    Van Zaane, D., Gielkens, A.J.L. Hesselink, W.G. and Bloemers, H.P.J. Identification of Rauscher leukemia virus-specific mRNAs for the synthesis GAG and ENV gene products. Proc. Natl. Acad. Sci. USA. 74, 1855–1859 (1977).Google Scholar
  31. 31.
    Mueller-Lantzsch N. and Fan., Monospecific immunoprecipitation ofmurine leukemia virus polyribosomes: Identification of p30 specific messenger RNA. Cell 9, 579–585 (1976).Google Scholar
  32. 32.
    Salden, M., Asselbergs, F.A.M. and Bloemendal, H. Translation of oncogenic virus RNA in Xenopus laevis oocytes, Nature 259, 696–699 (1976).Google Scholar
  33. 33.
    Salden, M.H.L., Selten-Versteegen, A.M. and Bloemendal, H. Translation of Rauscher murine leukemia viral RNA. A model for the function of a virus-specific messenger. Biochem. Biophys. Res. Commun. 72, 610–618 (1976).Google Scholar
  34. 34.
    Opperman, H., Bishop, J.M., Varmus, H.E. and Levintow, L., A joint product of the genes gag and pol of avian sarcoma virus: a possible precursor of reverse transcrptase Cell 12, 993–1005 (1977).Google Scholar
  35. 35.
    Jamjoom, G.A., Naso, R.B. and Arlinghaus, R.B. Further characterization of intracellular precursor polyproteins of Rauscher leukemia virus, Virology 78, 11–34 (1977).Google Scholar
  36. 36.
    Philipson, L., Anderson, P., Olsheysky, U., Weinberg, R., Baltimore, D. and Gesteland, R. Translation of MuLV and MSV RNAs in nuclease treated reticulocyte extracts: enhancement of the pag-pol polypeptide with yeast suppressor tRNA, Cell 13, 189–199 (1978).Google Scholar
  37. 37.
    Murphy, E.C., Kopchick, J.J., Watson, K.F. and Arlinghaus, R.B. Cell-free synthesis of a precursor polyprotein containing both gag and pol gene products by Rauscher leukemia virus 35S RNA. Cell 13, 359–369 (1978).Google Scholar
  38. 38.
    Weiss, S.R., Hackett, P.B., Oppermann, H., Ullrich, A., Levintow, L. and Bishop, J.M. Cell-free translation of avian sarcoma virus RNA: Suppression of the gag termination codon does not augment the synthesis of the joint gag/pol product, Cell. 15, 607–714 (1978).Google Scholar
  39. 39.
    Kerr, I.M., Olshevsky, U., Lodish, H.F. and Baltimore, D. Translation of murine leukemia virus RNA in cell-free systems from animal cells. J. Virol. 18, 627–735 (1976).Google Scholar
  40. 40.
    Rothenberg, E., Donaoghue, D.J. and Baltimore, D., Analysis of a 5′ leader sequence on murine leukemia virus 21S RNA: heteroduplex mapping with long reverse transcriptase products. Cell 13, 435–451 (1978).Google Scholar
  41. 41.
    Gielkens, A.J.L., Van Zaane, D., Bloemers, H.P.H. and Bloemendal, H. Synthesis of Rauscher leukemia virus specific polypeptides in vitro. Proc. Natl. Acad. Sci. USA 73, 356–360 (1976).Google Scholar
  42. 42.
    Stacey, D.W., Allfrey, V.G. and Hanafusa, H. Microinjection analysis of envelope-glycoprotein messenger activities of avian leukosis virus. Proc. Natl. Acad. Sci. USA 74, 1614–1618 (1977).Google Scholar
  43. 43.
    Ghysdael, J., Hubert, E., Travnicek, M., Bolognesi, D., Burny, A., Cleuter, Y., Huez, G., Kettmann, R., Marbaix, G., Portetelle, D. and Chantrenne, H. Frog oocytes synthesize and completely process the precursor polypeptide to virion structural proteins after microinjection of avian myeloblastosis virus RNA. Proc. Natl. Acad. Sci., USA, 74, 3230–3234 (1977).Google Scholar
  44. 44.
    Vogt, V.M., Eisenman, R. and Diggelman, H. Generation of avian myeloblastosis virus structural proteins by proteolytical cleavage of a precursor polypeptide. J. Mol. Biol. 96, 471–493 (1975).Google Scholar
  45. 45.
    Reynolds, R.K., Van de Ven, W.J.M. and Stephenson, J.R. Translation of type C viral RNAs in Xenopus oocytes; Evidence that the 120,000 molecular wieght polyprotein expressed in Abelson Leukemia virus transformed cells is viral coded. J. Virol. 25, 665–670 (1978).Google Scholar
  46. 46.
    Burny, A., Bex, F., Chantrenne, H., Cleuter, Y., Dekegel. D., Ghysdael, J., Rettmann, R., Leclercq, M., Leunen, J., Mammerick, M. and Portetelle, D. Bovine leukemia virus involvement in endozootic bovine leukemia. Advances in Cancer Res. Vol. 28 (Klein, G., and Weinhouse, S., eds.) Acad. Press, New York, pp. 252–312, 1978.Google Scholar
  47. 47.
    Ghysdael, J., Kettmann, R., and Burney, A. Translation of bovine leukemia virus RNAs in heterologous protein synthesizing systems. J. Virology, 29 1978–1998 (1979).Google Scholar
  48. 48.
    Esteban, M. and Kerr, I.M., The synthesis of encephalomyocarditis virus polypeptides in infected L-cells and cell-free systems. Eur. J. Biochem. 45, 567–576 (1974).Google Scholar
  49. 49.
    Scupham, R.K., Jones, K.J., Sagik, B.P. and Bose, H.R. Virus directed post-translational cleavage in Sindbis virus-infected cells. J. Virol. 22, 568–571 (1977).Google Scholar
  50. 50.
    Sacks, T.L., Devare, S.G., Blennerhasset, G.T. and Stephenson, J.R. Nonconditional replication mutants of type C and D retroviruses defective in gag gene-coded post-translational processing. Virology 91, 352–363 (1978).Google Scholar
  51. 51.
    Von der Helm, K. Cleavage of Rous sarcoma viral polypeptide precursor to internal structural proteins in vitro involves viral protein p. 15. Proc. Natl. Acad. Sci. USA., 74, 911–915 (1977).Google Scholar
  52. 52.
    Oroszlan, S., Henderson, L.E., Stephenson, J.R., Copeland, T.D., Long, C.W., Ihle, J.N. and Gilden, R.V. Amino and carboxylterminal amino acid sequences of proteins coded by gag and gene of murine leukemia virus. Proc. Natl. Acad. Sci. USA., 75, 1404–1408 (1978).Google Scholar
  53. 53.
    Van Zaane, D., Dekker-Michielsen, M.J.A. and Bloemers, H.P.J. Virus-specific precursor polypeptides in cells infected with Rauscher leukemia virus: synthesis, identification and processing. Virology 75, 113–129 (1976).Google Scholar
  54. 54.
    Edwards, S.A. and Fan, H., Gag-related polyproteins of Moloney murine leukemia virus: Evidence for independent synthesis of glycosylated and unglycosylated forms. J. Virol. 30, 551–563 (1979).Google Scholar
  55. 55.
    Schultz, A.M. and Oroszlan, S. Murine leukemia virus gag polyproteins: The paptide chain unique to pr 80 is located at the amino terminus, Virology 91, 481–486 (1978).Google Scholar
  56. 56.
    Rothman, J.E., Katz, F.N. and Lodish, H.F. Glycosylation of a membrane protein is restricted to the growing polypeptide chain but is not necessary for insertion as a transmembrane protein. Cell 15, 1447–1454 (1978).Google Scholar
  57. 57.
    Jilka, R.L., Cavalieri, R.L., Yaffe, L. and Pestka, S. Synthesis and glycosylation of the MOPC-46B immunoglobulin kappa chain. Biochem. Biophys. Res. Commun. 79, 625–630 (1977).Google Scholar
  58. 58.
    Deacon, N.J. And Erbinger, A. Fucose incorporation into oocyte synthesized rat immunoglobulin, FEBS 79, 191–194 (1977).Google Scholar
  59. 59.
    Reynolds, F.H., Jr. Premkumar, E. and Pitha, P.M. Interferon activity produced by translation of human interferon messenger RNA in cell-free system and in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 72, 4881–4885 (1975).Google Scholar
  60. 60.
    Chan, L., Kohler, P.O. and O'Malley, B.W. Translation of ovalbumin mRNA in Xenopus laevis oocytes. Characterization of the system and effects of estrogen on injected mRNA populations. J. Clin. Invest. 57, 576–585 (1976).Google Scholar
  61. 61.
    Kourides, I.A. and Weintraub, B.D. mRNA-directed biosynthesis of α-submit of thyrotropin: Translation in cell-free and whole-cell systems., Proc. Natl. Acad. Sci. USA 76, 298–302 (1979).Google Scholar
  62. 62.
    Nusse, R., Asselbergs, F.A.M., Salden, M.H.L., Michalides, R.J.A.M. and Bloemendal, H. Translation of mouse mammary tumor virus RNA; Precursor polypeptides are phosphorylated during processing. Virology 21, 106–115 (1978).Google Scholar
  63. 63.
    Axelrod, N., Phosphoproteins of adenovirus 2. Virology 87, 366–383 (1978).Google Scholar
  64. 64.
    Berns, A.J.M., Van Kraaikamp, M., Bloemendal, H. and Lane, C.D. Calf crystallin in frog cells: The translation of lens cell 14-S mRNA in oocytes. Proc. Natl. Acad. Sci. USA 69, 1606–1609 (1972).Google Scholar
  65. 65.
    Berns, A.J.M., Strous, G.J.A.M. and Bloemendal, H. Heterologous in vitro synthesis of lens α-crystallin polypeptide. Nature New Biology 235, 7–9 (1972).Google Scholar
  66. 66.
    Palmiter, R., Prevention of NH2-terminal acetylation of proteins synthesized in cell-free systems. J. Biol. Chem. 252, 8781–8783 (1977).Google Scholar
  67. 67.
    Berns, A.J.M., Thesis, University of Nijmegen, Nijmegen, The Netherlands (1972).Google Scholar
  68. 67a.
    Berns, A., Janssen, P. and Bloemendal, H. The molecular weight of the 14S calf lens messenger RNA. Biochem. Biophys. Res. Commun. 59, 1157–1164 (1974).Google Scholar
  69. 68.
    Rollins, J.W. and Flickinger, R.A. Collagen synthesis in Xenopus oocytes after injected of nuclear RNA in frog embryos. Science 178, 1204–1205 (1972).Google Scholar
  70. 69.
    Beneviste, K., Wilczek, J., Ruggieri, A. and Stern, R. Translation of collagen messenger RNA in a cell-free system derived from wheat germ. Biochemistry 15, 830–835 (1976).Google Scholar
  71. 70.
    Stevens, R.H. and Williamson, A.R., Specific mRNA molecules from myeloma cells in heterogeneous nuclear and cytoplasmic RNA containing poly-A. Nature 239, 143–146 (1972).Google Scholar
  72. 71.
    Stevens, R.H. and Williamson, A.R., Translational control of immunoglobulin synthsis: II. Cell-free interaction of myeloma immunoglobulin with RNA. J. Mol. Biol. 78, 517–525 (1978).Google Scholar
  73. 72.
    Vassart, G., Refetoff, S., Brocas, H., Dinsart, C. and Dumont, J.E., Translation of thyroglobulin 33S messenger RNA as a means of determining thyroglobulin quaternary structure. Proc. Natl. Acad. Sci. USA. 74, 4462–4465 (1977).Google Scholar
  74. 73.
    Labarca, C. and Paigen, K., mRNA-directed synthesis of catalytically active mouse B-glucuronidase in Xenopus oocytes. Proc. Natl. Acad. Sci. USA. 74, 4462–4465 (1977).Google Scholar
  75. 74.
    Asselbergs, F.A.M., Koopmans, M., Van Venrooij, W.J. and Bloemendal, H. Post-translational assembly of lens α-crystallin in the reticulocyte lysate and in Xenopus laevis oocytes. Eur. J. Biochem. 91, 65–78 (1978).Google Scholar
  76. 75.
    Asselbergs, F.A.M., Koopmans, M., Van Venrooij, W.J. and Bloemendal, H., β-crystallin synthesis in Xenopus oocytes. Exp. Eye Res., 28, 475–482 (1979).Google Scholar
  77. 76.
    Ghysdael, J., Hubert, E., Travnicek, M., Bolognesi, D.P., Cleuter, Y., Huez, G., Marbaix, G., Portetelle, D. and Chantrenne, H. Synthesis and complete processing of a high-molecular-weight precursor polypeptide to viral structural proteins in toad oocytes microinjected with avian myeloblastosis virus ribonucleic acid. Biochem. Soc. Trans. 5, 950–953 (1977).Google Scholar
  78. 77.
    Katz, R.A., Maniatis, G.M., Guntaka, R.V. Translation of avian sarcoma virus RNA in Xenopus laevis oocytes. Biochem. Biophys. Res. Comm. 86, 447–453 (1979).Google Scholar
  79. 78.
    Gedamu, L., Dixon, G.H. and Gurdon, J.B. Studies on the injection of poly(A)+ protamine mRNA in Xenopus laevis oocytes, Exptl. Cell. Res. 117, 325–334 (1978).Google Scholar
  80. 79.
    Gruber, M. cited in: Campbell P.N. and Blobel, G. The role of organelles in the chemical modification of the primary translation products of secretory proteins. FEBS Lett. 72, 215–226 (1976).Google Scholar
  81. 80.
    Mous, J., Peeters, B., Rombauts, W. and Heyns, W. Synthesis of rat prostatic binding protein in Xenopus oocytesm and in wheat germ. Biochim. Biophys. Res. Commun. 79, 1111–1116 (1977).Google Scholar
  82. 81.
    Yip, C.C., Hew, C.-L. and Hsu, H. Translation of messenger ribonucleic acid from isolated pancreatic islets and human insulinoma. Proc. Natl. Acad. Sci. USA. 72, 4777–4776 (1975).Google Scholar
  83. 82.
    Kortbeek-Jacobs, N. and van der Donk, H. Detection of specific antibody producing cells in the porcine colostrum by in ovo translation of their mRNA. J. Immunol. Meth. 24, 195–199 (1978).Google Scholar
  84. 83.
    Palmiter, R.D., Gagnon, J., Vogt, V.M., Ripley, S. and Eisenman, R.N., The NH2-terminal sequence of the avian oncovirus gap precursor polyprotein (Pr 76gag) Virology 91, 423–433 (1978).Google Scholar
  85. 84.
    Asselbergs, F.A.M., Thesis, University of Nijmegen, Nijmegen, The Netherlands (1979).Google Scholar
  86. 85.
    Mous, J., Peeters B., Rombauts W. and Heyns, W. Synthesis and glycosylation of rat prostatic binding protein in Xenopus laevis oocytes. FEBS Letters 103, 81–84 (1979).Google Scholar
  87. 86.
    Colman, A. and Morser, J. Export of proteins from oocytes of Xenopus laevis. Cell 17, 517–526 (1979).Google Scholar

Copyright information

© Dr. W. Junk bv Publishers 1979

Authors and Affiliations

  • Fred A. M. Asselbergs
    • 1
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations