Journal of comparative physiology

, Volume 145, Issue 1, pp 21–27 | Cite as

Oxygen and carbon dioxide transporting qualities of hemocyanin in the hemolymph of a natant decapodPalaemon adspersus

  • Roy E. Weber
  • Lars Hagerman
Article

Summary

  1. 1.

    The O2 and CO2 combining properties ofPalaemon adspersus hemolymph is studied, aiming to assess respiratory function and the environmental and metabolic adaptations of hemocyanin of natant decapods where, in contrast to the intensively-studied, larger and predominantly less active reptant decapods, virtually no information is available.

     
  2. 2.

    The hemolymph shows a high O2 carrying capacity (mean=2.8 vol%), a low O2 affinity (at 15 °C half-saturation tension,P50=16 and 37 mm Hg at pH 7.85 and 7.65, respectively), pronounced cooperativity in O2 binding (Hill's coefficient,n≃2.8) and a large, pH dependent Bohr factor (ϕ=ΔlogP50/ΔpH=−2.0 and −0.9 at pH 7.85 and 7.4, respectively) (Figs. 1 and 2). These qualities are distinct from those typifying reptant hemocyanins and appear illsuited for O2 transport at low ambient tensions, but well-adapted for O2 delivery in tissues at highPO2, supporting high levels of metabolism and activity.

     
  3. 3.

    CO2 has a specific, augmenting effect on O2 affinity at high pH (Fig. 3), indicating carbamate formation with an opposite oxygenation-linkage as in vertebrate hemoglobins. Astrup titrations indicate the presence of a small but distinct Haldane effect at physiological pH, and buffering capacity varies greatly (ΔHCO3/ΔpH≃−4.4 to −9.3 mmol·1−1·(pH unit)−1 depending on hemocyanin concentration) (Fig. 4). Equilibrium curves of total, non-protein-bound CO2 show large capacitance for transport at low, in vivo CO2 tensions (Fig. 4).

     
  4. 4.

    The data are discussed comparatively, particularly as regards hemocyanin function in reptant decapods, and the O2, CO2 and proton exchanges involved.

     

Keywords

Carbamate Haldane Large Capacitance Carry Capacity Metabolic Adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainslie RC (1980) The quantitative role of haemocyanin in the respiration of abalone (genusHaliotis). J Exp Zool 211:87–99Google Scholar
  2. Angersbach, D, Decker H (1978) Oxygen transport in crayfish blood: Effect of thermal acclimation, and short-term fluctuations related to ventilation and cardiac performance. J Comp Physiol 123:105–112Google Scholar
  3. Boone WR, Schoffeniels E (1979) Hemocyanin synthesis during hypo-osmotic stress in the shore crabCarcinus maenas (L.). Comp Biochem Physiol 63B:207–214Google Scholar
  4. Bridges CR, Bicudo JEPW, Lykkeboe G (1979) Oxygen content measurement in blood containing haemocyanin. Comp Biochem Physiol 62A:457–462Google Scholar
  5. Burnett LE (1979) The effects of environmental oxygen levels on the respiratory function of hemocyanin in the crabsLibinia emarginata andOcypode quadrata. J Exp Zool 210:289–299Google Scholar
  6. Busselen P (1970). Effects of moulting cycle and nutritional conditions on haemolymph proteins inCarcinus maenas. Comp Biochem Physiol 37:73–83Google Scholar
  7. Cook SF (1927) The action of potassium cyanide and potassium ferricyanide on certain respiratory pigments. J Gen Physiol 11:339–346Google Scholar
  8. Djangmah JS (1970a) The effects of feeding and starvation on copper in the blood and hepatopancreas, and on blood proteins ofCrangon vulgaris (Fabricius). Comp Biochem Physiol 32:709–731Google Scholar
  9. Djangmah JS (1970b) Blood and hepatopancreas copper inCrangon vulgaris (Fabricius). Comp Biochem Physiol 32:733–745Google Scholar
  10. Hagerman L, Uglow RF (1979) Heart and scaphognathite activity in the shrimpPalaemon adspersus Rathke. Ophelia 18:89–96Google Scholar
  11. Hagerman L, Weber RE (1981) Respiratory rate, hemolymph oxygen tension and hemocyanin level in the shrimpPalaemon adspersus Rathke. J Exp Mar Biol Ecol 54:13–20Google Scholar
  12. Johansen K, Lenfant C, Anthony-Mecklenburg T (1970) Respiration in the crab,Cancer magister. Z Vergl Physiol 70:1–19Google Scholar
  13. Krogh-Rasmussen K, Weber RE (1979) Respiratory properties of erythrocruorin (extracellular hemoglobin) in the blood of the annelidArenicola marina with special reference to the influences of salinity and temperature. Ophelia 18:151–170Google Scholar
  14. Lontie R, Witters R (1973) Hemocyanin. In: Eichhorn GL (ed) Inorganic biochemicstry. Elsevier, Amsterdam, pp 344–358Google Scholar
  15. Lykkeboe G, Brix O, Johansen K (1980) Oxygen-linked CO2 binding independent of pH in cephalopod blood. Nature 287:330–331Google Scholar
  16. Mangum CP (1980) Respiratory function of hemocyanins. Am Zool 20:19–38Google Scholar
  17. Mangum CP, Lykkeboe L (1979) The influence of inorganic ions and pH on oxygenation properties of the blood in the gastropod molluscBusycon canaliculatum. J Exp Zool 207:417–430Google Scholar
  18. Mangum CP, Shick JM (1972) The pH of body fluids of marine invertebrates. Comp Physiol Biochem 42A:693–697Google Scholar
  19. Mangum CP, Weiland AL (1975) Function of hemocyanin in respiration of the blue crabCallinectes sapidus. J Exp Zool 193:257–264Google Scholar
  20. Mauro NA (1978) The effect of temperature on oxygen transport in decapod crustaceans. Am Zool 18:639Google Scholar
  21. McMahon BR, McDonald DG, Wood CM (1979) Ventilation, oxygen uptake and haemolymph oxygen transport following enforced exhausting activity in the Dungeness crabCancer magister. J Exp Biol 80:271–285Google Scholar
  22. Miller K, Holde KE Van (1974) Oxygen binding byCallianassa californiensis hemocyanin. Biochemistry 13:1668–1674Google Scholar
  23. Miller KI, Pritchard AW, Rutledge PS (1976) Respiratory regulation and the role of the blood in the burrowing shrimpCallianassa californiensis (Decapoda, Thalassinidea). Mar Biol 36:233–242Google Scholar
  24. Miller KI, Eldred NW, Arisaka F, Holde KE Van (1977) Structure and function of hemocyanin from thalassinid shrimp. J Comp Physiol 115:171–184Google Scholar
  25. Muus B (1967) The fauna of the Danish estuaries and lagoons. Medd Dan Fisk Havunders NS 5:1–316Google Scholar
  26. Nickerson KW, Van Holde KE (1971) A comparison of molluscan and arthropod hemocyanin I. Circular dichroism and absorption spectra. Comp Biochem Physiol 39B:855–872Google Scholar
  27. Redmond JR (1968) The respiratory function of hemocyanin. In: Ghiretti F (ed) Physiology and biochemistry of hemocyanins. Academic Press, New York, pp 5–23Google Scholar
  28. Rossi-Bernardi L, Roughton EJW (1967) The specific influence of carbon dioxide and carbamate compounds in the buffer power and Bohr effects in human haemoglobin solutions. J Physiol 189:1–29Google Scholar
  29. Schoffeniels E (1976) Adaptations with respect to salinity. Biochem Soc Symp 41:179–204Google Scholar
  30. Sevilla C, Lagarrique J-G, (1979) Oxygen binding characteristics of Oniscoidea hemocyanins (Crustacea, terrestrial isopods). Comp Biochem Physiol 64A:531–536Google Scholar
  31. Sick H, Gersonde K (1969) Method for continuous registration of O2-binding curves of haemoproteins by means of a diffusion chamber. Anal Biochem 32:362–376Google Scholar
  32. Spoek GA (1962) Verslag van onderzoekingen gedaan in het Stazione Zoologica te Napels. K Ned Acad Wet (Amsterdam) 71:29–34Google Scholar
  33. Stadie WC, O'Brien H (1936) The carbamate equilibrium I. The equilibrium of amino acids, carbon dioxide and carbamates in aqueous solution with a note on the Ferguson-Roughton carbamate method. J Biol Chem 112:723–758Google Scholar
  34. Truchot J-P (1971a) Fixation de l'oxygène par le sérum deCarcinus maenas (L.) (Crustacé Décapode Brachyoure). CR Acad Sci (Paris) 272:984–987Google Scholar
  35. Truchot J-P (1971b) Etude comparée de la fixation de l'oxygène par le sérum de cinq espèces des Crustacés Décapodes Brachyoures. CR Acad Sci (Paris) 272:2706–2709Google Scholar
  36. Truchot J-P (1973a) Temperature and acid-base regulation in the shore crabCarcinus maenas (L.). Resp Physiol 17:11–20Google Scholar
  37. Truchot J-P (1973b) Action spécifique du dioxyde de carbone sur l'affinité pour l'oxygène de l'hémocyanine deCarcinus maenas (L.) (Crustacé Décapode Brachyoure). CR Acad Sci (Paris) 276:2965–2968Google Scholar
  38. Truchot J-P (1976a) Carbon dioxide combining properties of the blood of the shore crabCarcinus maenas (L.): Carbon dioxide solubility coefficient and carbonic acid dissociation constants. J Exp Biol 64:45–57Google Scholar
  39. Truchot J-P (1976b) Carbon dioxide combining properties of the blood of the shore crab,Carcinus maenas (L.): CO2-dissociation curves and the Haldane effect. J Comp Physiol 112:283–293Google Scholar
  40. Tucker VA (1967) Method for oxygen content and dissociation curves on microliter blood samples. J Appl Physiol 23:410–414Google Scholar
  41. Tyuma I, Ueda Y (1975) Non-linear relationship between oxygen saturation and proton release, and equivalence of the Bohr and Haldane effects in human hemoglobin. Biochem Biophys 64:1278–1283Google Scholar
  42. Uglow RF (1969) Haemolymph protein concentrations in Portunid crabs II. The effects of imposed fasting onCarcinus maenas. Comp Biochem Physiol 31:959–967Google Scholar
  43. Weber RE (1981) Cationic control of O2 affinity in lugworm erythrocruorin. Nature 292:386–387Google Scholar
  44. Weber RE, Hemmingsen EA, Johansen K (1974) Functional and biochemical studies of penguin myoglobin. Comp Biochem Physiol 49B:197–214Google Scholar
  45. Weber RE, Johansen K (1979) Oxygenation-linked binding of carbon dioxide and allosteric phosphate cofactors by lungfish hemoglobin. In: Gilles R (ed) Animals and environmental fitness. Pergamon Press, Oxford, pp 49–50Google Scholar
  46. Weber RE, Marrewijk JA van (1972) Free amino acids and the isosmotic intracellular regulation in the shrimpCrangon crangon. Life Sci 11:589–595Google Scholar
  47. Wolvekamp HP, Kruyt W (1948) Experiments on the carbon dioxide transport by the blood of the edible snail (Helix pomatia L.), the common crab (Cancer pagurus L.) and the common lobster (Homarus vulgaris ME). Arch Neerl Physiol 28:620–629Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Roy E. Weber
    • 1
  • Lars Hagerman
    • 2
  1. 1.Institute of BiologyOdense UniversityOdense MDenmark
  2. 2.Marine Biological LaboratoryHelsingørDenmark

Personalised recommendations