Journal of Structural Chemistry

, Volume 33, Issue 2, pp 185–190 | Cite as

Theoretical analysis of dissociative adsorption of H2O on Ni(100)

  • V. I. Avdeev
  • I. I. Zakharov
  • G. M. Zhidomirov
Article

Conclusions

In conclusion, let us note the principal results of the calculation.
  1. 1.

    On a clean Ni(100) surface, only molecular adsorption of water is realized. Partial dissociation of H2O is thermodynamically allowed process; however, dissociation of water is impossible because of kinetic limitations.

     
  2. 2.

    Modification of the nickel surface by oxygen stabilizes the donor-acceptor pair (H2O/O) on the surface and removes the kinetic limitation in decomposition of water, through a substantial reduction of the activation energy of dissociation.

     
  3. 3.

    The promoting role of oxygen is manifested in an increase in the nonuniformity of electron density on the nickel surface in the vicinity of the [Ni]−OH2 bond, which makes it possible to open up a new channel of the reaction in which a high degree of energy compensation in the water dissociation reaction is possible.

     

Keywords

Oxygen Physical Chemistry Nickel Activation Energy Inorganic Chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. R. Norton, in: Fundamental Studies of Heterogeneous Catalysis (Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 4), D. A. King and D. P. Woodruff (eds.), Elsevier (1982), pp. 27–94.Google Scholar
  2. 2.
    P. A. Thiel and T. E. Madey, Surf. Sci. Rep.,7, 211–338 (1987).Google Scholar
  3. 3.
    J. M. Heras and L. Viscido, Catal. Rev. Sci. Eng.,30, 281–338 (1988).Google Scholar
  4. 4.
    L. Toyoshima and G. A. Somorjai, Catal. Rev.,19, 105–159 (1979).Google Scholar
  5. 5.
    B. E. Nieuwenhuys, Surf. Sci.,126, 307–336 (1983).Google Scholar
  6. 6.
    C. Benndorf and T. E. Madey, Surf. Sci.,194, 63–91 (1988).Google Scholar
  7. 7.
    G. Pirug, C. Ritke, and H. P. Bonzel, Surf. Sci.,241, 289–301 (1991).Google Scholar
  8. 8.
    L. Olle, M. Salmeron, and A. M. Baro, J. Vac. Sci. Technol. A,3, 1866–1870 (1985).Google Scholar
  9. 9.
    C. Benndrof, C. Nobl, and F. Thieme, Surf. Sci.,121, 249–251 (1982).Google Scholar
  10. 10.
    C. Benndorf, C. Nobl, and T. E. Madey, Surf. Sci.,138, 292–304 (1984).Google Scholar
  11. 11.
    T. E. Madey and F. P. Netzer, Surf. Sci.,117, 549–601 (1982).Google Scholar
  12. 12.
    A. B. Anton and D. C. Cadogan, Surf. Sci.,239, L548-L559 (1990).Google Scholar
  13. 13.
    A. B. Anderson, Surf. Sci.,105, 159–176 (1981).Google Scholar
  14. 14.
    C. W. Bauschlicher, J. Chem. Phys.,83, 3129–3133 (1985).Google Scholar
  15. 15.
    H. Yang and J. L. Whitten, Surf. Sci.,223, 131–150 (1989).Google Scholar
  16. 16.
    C. F. Melius, C. L. Bisson, and W. D. Wilson, Phys. Rev. B,18, 1647–1650 (1978).Google Scholar
  17. 17.
    V. I. Avdeev, I. I. Zakharov, G. M. Zhidomirov, et al., Zh. Strukt. Khim.,33, No. 2, 29–34 (1992).Google Scholar
  18. 18.
    V. I. Avdeev and G. M. Zhidomirov, Kinet. Katal.,29, 808–814 (1988).Google Scholar
  19. 19.
    G. K. Boreskov, Heterogeneous Catalysis [in Russian], Nauka, Moscow (1986), pp. 50–68.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. I. Avdeev
  • I. I. Zakharov
  • G. M. Zhidomirov

There are no affiliations available

Personalised recommendations