Metal Science and Heat Treatment

, Volume 32, Issue 2, pp 95–100 | Cite as

Features of substructure formation on tempering Kh23K15T type alloys

  • B. A. Samarin
  • B. A. Maksimov
  • V. S. Shubakov
  • M. I. Iordanova
  • A. E. Kolchin
Theory
  • 23 Downloads

Conclusion

Formation of structural morphology in alloys of the Kh23K15T type is accomplished in two heat treatment stages: from ITMT to the final tempering stage at 550–500°C. Depending on the conditions for carrying out stepwise heat treatment at different stages of forming a highly coercive condition it is possible to form different structural imperfections: composition inhomogeneity and secondary decomposition within α1 - and α1-phases. Secondary decomposition arises primarily in the case when with a change over from one tempering stage to another overcooling Δt exceeds 20°C. The most intense secondary decomposition develops at temperatures below 610°C with which the most intense separation of phases in chemical composition probably starts.

Keywords

Heat Treatment Structural Morphology Treatment Stage Type Alloy Coercive Condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Homma, E. Horikoshi, T. Minova, and M. Okada, High energy Fe−Cr−Co permanent magnets with (BH)max⋟8–10 Mg“doe”, Appl. Phys. Lett.,37, No 1, 92–93 (1980).Google Scholar
  2. 2.
    B. A. Samarin, V. S. Shubakov, G. P. Dement'eva, et al., “Heat treatment and magnetic properties of high-coercivity alloys of the iron-cobalt-chromium system alloyed with titanium”, Proc. VII All-Union. Conf. on Constant Magnets (Vladimir, 1982) [in Russian], Informélektro, Moscow (1982).Google Scholar
  3. 3.
    B. A. Samarin, V. S. Shubakov, B. A. Maksimov, and L. A. Gorevaya, “Interconnection of microstructure and magnetic properties in high-coercivity alloy Fe−25Cr−15Co−1Nd−1Al”, Izv. Akad. Nauk SSSR, Metally, No. 2, 223–225 (1981).Google Scholar
  4. 4.
    R. Cremer and I. Pffeiffer, “Untersuchungen zum Ausscheidungs-verhalten von Co−Cr−Fe Dauermagnet leg.”, Phys.,80, 164–176 (1975).Google Scholar
  5. 5.
    M. Okada, G. Thomas, M. Homma, and H. Kaneko, “Microstructure and magnetic properties of Fe−Cr-Co alloys”, Trans. on Magn.,MAG-14, (1978), No. 14, 245–252.Google Scholar
  6. 6.
    T. Nishizawa, M. Hasebe, and M. Ko, “Thermodynamic analysis of solubility and miscibility gap in ferromagnetic α-iron alloys”, Acta Met.,27, 817–827 (1979).Google Scholar
  7. 7.
    L. V. Vlasova, V. G. Livshits, B. A. Maksimov, et al., “Study of the heat treatment of high-coercivity alloys of the Kh23K15 type”, Izv. Vyssh. Uchebn. Zaved. Chern. Met., No. 1, 109–112 (1980).Google Scholar
  8. 8.
    B. A. Samarin, et al., “Structural and phase transformations in high-coercivity alloys of the Kh22K18 and Kh25K15/B types”, Izv. Akad. Nauk SSSR, Metally, No. 5, 119–122 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • B. A. Samarin
  • B. A. Maksimov
  • V. S. Shubakov
  • M. I. Iordanova
  • A. E. Kolchin

There are no affiliations available

Personalised recommendations