Skip to main content
Log in

Subcritical crack growth in brittle materials in microcracking conditions

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. M. Finkel', Physical Fundamentals of Fracture Retardation [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  2. A. Evans, A. E. Heuer, and D. Porter, “Crack resistance of ceramics, “ in: Fracture Mechanics, Vol. 17, Fracture of Materials [Russian translation, edited by D. Teplin], Mir, Moscow (1979), pp. 134–164.

    Google Scholar 

  3. A. G. Evans and T. J. Langdon, Structural Ceramics, Pergamon Press, Oxford (1976).

    Google Scholar 

  4. T. K. Gupta, “A qualitative model for the development of tough ceramics,” J. Mater. Sci.,9, No. 10, 1585–1589 (1974).

    Google Scholar 

  5. H. Hubner and W. Jillek, “Subcritical crack extension and crack resistance in polycrystalline-alumina,” J. Mater. Sci.,12, No. 1, 117–125 (1977).

    Google Scholar 

  6. N. Claussen and J. Steeb, “Toughening of ceramic composites by oriented nucleation of microcracks,” J. Am. Ceram. Soc.,59, No. 9/10, 457–458 (1976).

    Google Scholar 

  7. D. J. Green, P. S. Nicholson, and J. D. Embury, “Microstructure development and fracture toughness of calcium-stabilized zirconia,” in: Fracture Mechanics of Ceramics (edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange), Vol. 2, Plenum Press, New York (1973), pp. 541–554.

    Google Scholar 

  8. G. A. Gogotsi, “Evaluation of the brittleness of refractories tested for thermal stability,” Probl. Prochn., No. 10, 26–30 (1973).

    Google Scholar 

  9. G. A. Gogotsi and Ya. L. Grushevskii, “Classification of refractories on the basis of the nature of brittleness and the evaluation of their thermal stability,” Ogneupory, No. 4, 48–52 (1978).

    Google Scholar 

  10. W. Pompe, H.-A. Bahr, A. Gille, and W. Kreher, “Increased fracture toughness of brittle materials by microcracking in an energy dissipative zone at the crack tip,” J. Mater. Sci.,13, No. 12, 2720–2722 (1978).

    Google Scholar 

  11. F. E. Buresch, “Micromechanisns controlling fracture toughness of brittle composites,” Powder Metall. Int.,12, No. 3, 123–126 (1980).

    Google Scholar 

  12. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  13. R. F. Pabst, “Determination of the kIc factor with diamond-saw cuts in ceramic materials,” in: Fracture Mechanics of Ceramics (edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange), Vol. 2, Plenum Press, New York (1973), pp. 555–565.

    Google Scholar 

  14. K. Smit, “Restrictions in the use of fracture mechanics approaches for composites,” Mechanics: New Developments in Science Abroad. Inelastic Properties of Composites [in Russian], No. 16, 221–248 (1978).

    Google Scholar 

  15. K. Trustrum and A. de S. Jayatilaka, “On estimating the Weibull modulus for a brittle material,” J. Mater. Sci.,14, No. 5, 1080–1084 (1979).

    Google Scholar 

  16. W. F. Brown and J. C. Srawley, “Plane strain crack toughness testing of high strength metallic materials,” ASTM STP No. 410, Philadelphia (1966).

  17. Yu. L. Krasulin, V. N. Timofeev, S. M. Barinov, et al., Porous Structural Ceramics [in Russian], Metallurgiya, Moscow (1980).

    Google Scholar 

  18. Yu. L. Krasulin, S. M. Barinov, and V. N. Timofeev, “Examination of the fracture characteristics of porous ceramics in the temperature range 20–1700°C,” Preprint of the Institute of Metallurgy, Academy of Sciences of the USSR, Moscow (1979).

    Google Scholar 

  19. N. Claussen and D. P. H. Hasselman, “Improvement of thermal shock resistance of brittle ceramics by a dispersed phase of zirconia,” in: Thermal Stresses in Severe Environments (edited by D. P. H. Hasselman and R. A. Heller), Plenum Press, New York (1980), pp. 381–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 9, pp. 84–88, September, 1982.

The authors are grateful to A. B. Ivanov for the preparation of the specimens of the materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barinov, S.M., Krasulin, Y.L. Subcritical crack growth in brittle materials in microcracking conditions. Strength Mater 14, 1256–1261 (1982). https://doi.org/10.1007/BF00779945

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00779945

Keywords

Navigation