Strength of Materials

, Volume 24, Issue 2, pp 115–131 | Cite as

Brittle fracture criterion: Structural mechanics approach

  • B. Z. Margolin
  • V. A. Shvetsova
Scientific-Technical Section
  • 43 Downloads

Abstract

The authors proposed a criterion for the initiation of brittle fracture which takes into account the role of normal and effective stresses during microcrack initiation. A calculation and experimental method of determining the parameters included in the condition of initiation of brittle fracture is developed. The method is used to select these parameters for 15Kh2MFA steel'in the initial and deformed condition. The dependence of the critical stress of brittle fracture on plastic strain for different loading histories is analyzed. The use of the proposed criterion of brittle fracture makes it possible to predict satisfactorily the temperature dependence of the cracking resistance parameter KIc(T) and effect of prior strain on this parameter. The modified formulation of the criterion of brittle fracture makes it possible to describe the fracture process for different stress-strain states of the materials.

Keywords

Brittle Plastic Strain Experimental Method Effective Stress Brittle Fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. P. Karzov, B. Z. Margolin, and V. A. Shvetsova, “Several physicomechanical approaches to analysis of macroscopic fracture criteria. Report 3, Brittle fracture,” Probl. Prochn., No. 6, 7–14 (1989).Google Scholar
  2. 2.
    G. P. Karzov, B. Z. Margolin, A. A. Prus, and V. A. Shvetsova, “Analysis of the conditions of initiation of brittle fracture,” Probl. Prochn., No. 11, 9–13 (1989).Google Scholar
  3. 3.
    G. P. Karzov, B. Z. Margolin and V. A. Shvetsova, “The strain-force criterion of brittle fracture,” in: Problems of Modern Fracture Mechanics [in Russian], Leningrad State University, Leningrad (1990), pp. 102–121.Google Scholar
  4. 4.
    V. M. Finkel', Physics of Fracture [in Russian], Metallurgiya, Moscow (1970).Google Scholar
  5. 5.
    J. Knott, “Micromechanisms of failure and cracking resistance of structural alloys,” in: Fracture Mechanics. Fracture Materials [Russian translation], Mir, Moscow (1979), pp. 40–82.Google Scholar
  6. 6.
    N. J. Petch, “The influence of some substitutional alloys on the cleavage of ferritic steels,” Acta Met.,35, No. 8, 2027–2034 (1987).Google Scholar
  7. 7.
    J. F. Knott, Fundamentals of Fracture Mechanics [Russian translation], Metallurgiya, Moscow (1978).Google Scholar
  8. 8.
    L. A. Kopel'man, Brittle Fracture Resistance of Welded Sections [in Russian], Mashinostroenie, Leningrad (1978).Google Scholar
  9. 9.
    Yu. Ya. Meshkov, Physical Fundamentals of Fracture of Metallic Structures [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  10. 10.
    W. Dahl and V. Anton (editors), Static Strength and Fracture Mechanics of Steels [Russian translation], Metallurgiya, Moscow (1986).Google Scholar
  11. 11.
    G. Hirth and I. Lothe, Dislocation Theories [Russian translation], Atomizdat, Moscow (1972).Google Scholar
  12. 12.
    A. S. Argon and J. Im, “Separation of second phase particles in spheroidized 1045 steel, Cu-0.6 Cr alloy and managing steel in plastic straining,” Met. Trans.6A, No. 4, 839–851 (1975).Google Scholar
  13. 13.
    K. McMahon, K. Bryant, and S. Banergee, “Effect of hydrogen impurities on brittle fracture of steel,” in: Fracture Mechanics. Fracture of Materials [Russian translation], Mir, Moscow (1979), pp. 109–133.Google Scholar
  14. 14.
    B. Z. Margolin and V. A. Shvetsova, “Effect of cyclic deformation on the brittle fracture resistance of material,” Probl. Prochn., No. 1, 14–21 (1991).Google Scholar
  15. 15.
    V. V. Rybin, A. A. Prus, and V. A. Shvetsova, “Limiting fracture characteristics of 15Kh2MFA and 15Kh2NMFA structural steels and their relationships with fracture micromechanisms,” in: Sudostro. Promst. Ser. Materiloved. Metalloved. Metall.,10, 23–29 (1989).Google Scholar
  16. 16.
    P. Bridgman, Examination of High Plastic Strains and Fracture [Russian translation], IL, Moscow (1955).Google Scholar
  17. 17.
    O. Zienkewich, Finite Element Method in Technology [Russian translation], Mir, Moscow (1975).Google Scholar
  18. 18.
    V. I. Maknenko, “The variants-difference methods for analysis of strain fields in nonisothermal loading,” in: Strain Fields in Low-Cycle Loading [in Russian], Nauka, Moscow (1979).Google Scholar
  19. 19.
    N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  20. 20.
    A. A. Blyumin, Yu. I. Zvezdin, V. A. Ignatov, et al., “Using fracture mechanics criteria for evaluating the efficiency of large pressure vessels,” Probl. Prochn., No. 6, 40–45 (1987).Google Scholar
  21. 21.
    V. T. Troshchenko, V. V. Pokrovskii, P. V. Yasnii, et al., “Effect of single preliminary plastic deformation on brittle fracture resistance,” Fiz.-Khim. Mekh. Mater., No. 6, 3–12 (1989).Google Scholar
  22. 22.
    G. P. Karzov, O. V. Kuklina, and B. Z. Margolin, “Several physicomechanical approaches to analysis of macroscopic fracture criteria. Report 2, Ductile fracture,” Probl. Prochn., No. 8, 3–10 (1989).Google Scholar
  23. 23.
    A. Ya. Krasovskii, Brittleness of Metals at Low Temperatures [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  24. 24.
    D. R. Curran, L. Simen, and D. A. Shockey, “Microstructure and fracture mechanics,” in: Shock Waves and Phenomena of High-Rate Deformation of Metals [Russian translation], Metallurgiya, Moscow (1984), pp. 387–412.Google Scholar
  25. 25.
    O. N. Romaniv, Fracture Toughness of Structural Steels [in Russian], Metallurgiya, Moscow (1979).Google Scholar
  26. 26.
    R. O. Ritchie, J. F. Knott, and J. R. Rice, “On the relation between critical tensile stress and fracture toughness in mild steel,” J. Mech. Phys. Sol.,21, No. 6, 395–410 (1973).Google Scholar
  27. 27.
    G. S. Pisarenko and A. I. Krasowsky, “Analysis of kinetics of quasibrittle fracture of crystalline materials,” in: Mechanical Behavior of Materials. Proceedings of International Conference of Mechanical Behavior of Materials, Vol. 1, Kyoto, 1971, Published Kyoto (1972), pp. 421–432.Google Scholar
  28. 28.
    J. R. Rice and G. F. Rosengren, “Plane strain deformation near a crack tip in a hardening material,” J. Mech. Phys. Sol.,16, No. 1, 1–12 (1968).Google Scholar
  29. 29.
    E. M. Morozov and G. P. Nikishkov, Finite Element Method in the Fracture Mechanics [in Russian], Naukova Dumka, Moscow (1980).Google Scholar
  30. 30.
    T. N. Chuchman and V. A. Likhachev, “Strain hardening and temperature dependence of yielding stresses in metals with fcc and bcc lattices,” Preprint of the A. I. Ioffe Physicotechnical Institute, USSR Academy of Sciences, Leningrad (1972).Google Scholar
  31. 31.
    R. Tomson, “Fracture mechanics,” in: Atomistics of Fracture [Russian translation], Mir, Moscow (1987), pp. 104–144.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • B. Z. Margolin
    • 1
  • V. A. Shvetsova
    • 1
  1. 1.Prometei Scientific and Production AssociationSt. Petersburg

Personalised recommendations