Molecular Biology Reports

, Volume 10, Issue 3, pp 143–146 | Cite as

Transcription of repetitive DNA in condensed plant chromatin

  • W. Nagl
  • H. -P. Schmitt


Polyadenylated transcripts homologous to highly repetitive DNA were found in root tips ofVicia faba by Northern blot hybridization. Electron microscope autoradiography using [3H]uridine as a probe revealed transcription of condensed chromatin in various higher plants. This is consistent with the general rule that highly repetitive DNA is located within condensed chromatin, but it is new that this chromatin fraction is active in RNA synthesis to a considerable amount. Semi-quantitative comparison of the intensity of transcription in species with widely differing 2C DNA contents by means of light microscope autoradiography revealed an inverse relationship between the amount of 2C DNA (and condensed chromatin), and the rate of RNA synthesis.


Inverse Relationship Northern Blot Uridine Condensed Chromatin Blot Hybridization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davidson, E. H. & Posakony, J. W., 1982. Nature 297: 633–635.Google Scholar
  2. 2.
    Arthur, R. R. & Straus, N. A., 1983. Biochim. Biophys. Acta 741: 171–179.Google Scholar
  3. 3.
    Lin, H. J., 1983. Experientia 39: 1390–1392.Google Scholar
  4. 4.
    Schmeckpeper, B. J., Scott, A. F. & Smith, K. D., 1984. J. Biol. Chem. 259: 1218–1225.Google Scholar
  5. 5.
    Tautz, D. & Renz, M., 1984. J. Mol. Biol. 172: 229–235.Google Scholar
  6. 6.
    Ilyin, Y. V. & Georgiev, G. P., 1982. CRC Crit. Rev. Biochem. 12: 237–287.Google Scholar
  7. 7.
    Holoubek, V., Deacon, N. J., Buckle, D. W. & Naora, H., 1983. Eur. J. Biochem. 137: 249–256.Google Scholar
  8. 8.
    Okada, N., Sakamoto, K. & Kondo, A., 1983. J. Biochem. 93: 723–731.Google Scholar
  9. 9.
    Sakamoto, K., Kominami, R., Mishima, Y. & Okada, N., 1984. Molec. Gen. Genet. 194: 1–6.Google Scholar
  10. 10.
    Nagl, W., Jeanjour, M., Kling, H., Kühner, S., Michels, I., Müller, T. & Stein, B., 1983. Biol. Zbl. 102: 129–148.Google Scholar
  11. 11.
    Nagl, W., 1983. Biol. Zbl. 102: 257–269.Google Scholar
  12. 12.
    Bennett, M. D., 1973. Brookhaven Symp. Biol. 25: 344–366.Google Scholar
  13. 13.
    Kiper, M. & Bartels, D., 1979. Plant Syst. Evol., Suppl. 2: 129–140.Google Scholar
  14. 14.
    Flavell, R. B., 1983. In: O.Ciferri & L.Dure III (eds.), Structure and Function of Plant Genomes. Plenum Press, New York, pp. 1–14.Google Scholar
  15. 15.
    Preisler, R. S. & Thompson, W. F., 1981. J. Mol. Evol. 17: 78–84.Google Scholar
  16. 16.
    Flavell, R. B., Bennett, M. D., Smith, D. B., 1974. Biochem. Genet. 12: 257–269.Google Scholar
  17. 17.
    Nagl, W., 1982. In: C.Nicolini (ed.), Cell Growth. Plenum Press, New York. pp. 171–218.Google Scholar
  18. 18.
    Beachy, R. W., Thompson, J. F. & Madison, J. T., 1978. Plant Physiol. 61: 139–144.Google Scholar
  19. 19.
    Evans, M., Croy, R. R. D., Hutchinson, P., Boulter, D., Payne, P. I. & Gordon, M. E., 1979. Planta 144: 455–462.Google Scholar
  20. 20.
    Püchel, M., Müntz, K., Parthier, B., Aurich, O., Bassüner, R., Manteuffel, R. & Schmidt, P., 1979. Eur. J. Biochem. 96: 321–329.Google Scholar
  21. 21.
    Tessier, L. & Esnault, R., 1980. Molec. Cell. Biochem. 29: 173–181.Google Scholar
  22. 22.
    Nicolini, C., 1979. In: C.Nicolini (ed.), Chromatin Structure and Function. Plenum Press, New York. pp. 613–666.Google Scholar
  23. 23.
    Davidson, E. H., 1982. In: J. T.Bonner (ed.), Evolution and Development. Springer, Berlin, Heidelberg, New York. pp. 65–84.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • W. Nagl
    • 1
  • H. -P. Schmitt
    • 1
  1. 1.Department of BiologyThe UniversityKaiserslauternFRG

Personalised recommendations