Molecular Biology Reports

, Volume 5, Issue 1–2, pp 43–51 | Cite as

Messenger ribonucleoprotein complexes in avian erythroblasts: Carriers of post-transcriptional regulation?

  • Maundrell K. 
  • Maxwell E. S. 
  • Civelli O. 
  • Vincent A. 
  • Goldenberg S. 
  • Buri J -F. 
  • Imaizumi-Scherrer M -T. 
  • Scherrer K. 


In this report we describe some recent and, in some cases, preliminary results on the characterization of messenger ribonucleoprotein complexes isolated from the nucleus and various subcellular compartments of immature avian red blood cells. Reviewing investigations carried out over the last ten years, we try to draw some general conclusions regarding the composition and significance of the protein associated with pre-mRNA in the nucleus and with translated and untranslated mRNA in the cytoplasm. Furthermore, we propose a flow diagram through the cell of the various consecutive carriers of genetic information. In the case of nuclear RNP the main conclusions for our research are that pre-mRNA is associated with a relatively small group of approximately 20 basic proteins which may be involved in structural functions, and with a larger population estimated to contain at least 60 acidic polypeptides. This latter group has the theoretical characteristics of agents involved in post-transcriptional regulation, analogous to the putative role of non-histone proteins in transcription.

The proteins of translated mRNP complexes are associated with specific segments of the mRNA; their function is unclear since they neither inhibit nor stimulate translation of their endogenous mRNA. However, in addition there exists genuinely repressed mRNA in the terminally differentiated erythroblast since the mRNA population in polyribosomes contains ten times fewer messages than the ribosome-free mRNP complexes. Of the order of 25% of the cytoplasmic globin mRNA is found in the untranslated fraction; thisin vivo repressed globin mRNP is also untranslatablein vitro, unless it is fully deproteinized. Since different messages in the untranslated mRNP compartment are associated with different sets of proteins we suppose that specific mRNAs can be recognized by specific sets of proteins in low redundancy, and can be drawn into the repressed state. We conclude that it is probable that RNP proteins play some role in post-transcriptional regulation of gene expression.


Structural Function Basic Protein Putative Role Subcellular Compartment Specific mRNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scherrer, K. in 6th Karolinska Symp. Res. Meth. Repord. End. (Ed. Diczfalusy). Bogtrykkeriet Forum, Copenhagen (1973).Google Scholar
  2. 2.
    Scherrer, K. in Eukaryotic Gene Regulation (Ed. Kolodny, G) CRC Press, Florida, (1979).Google Scholar
  3. 3.
    Revel, M. and Groner, Y., Ann. Rev. Biochem. 47, 1079 (1978).Google Scholar
  4. 4.
    Jeffreys, A. and Flavell, R., Cell 12, 1097 (1977).Google Scholar
  5. 5.
    Tilghman, S., Tiemeier, D., Polsky, F., Edgell, M., Siedman, J., Leder, A., Enquist, L., Norman, B., and Leder, P., Proc. Nat. Acad. Sci. U.S.A. 74,4406 (1977).Google Scholar
  6. 6.
    Therwath, A. and Scherrer, K., Proc. Nat. Acad. Sci. U.S.A. 75, 3776 (1978).Google Scholar
  7. 7.
    Wold, B., Klein, W., Hough-Evans, B. Britten, R., and Davidson, E., Cell 14,941 (1978).Google Scholar
  8. 8.
    Spohr, G., Imaizumi, T., Stewart, A. and Scherrer, K., FEBS Letters 28, 165 (1972).Google Scholar
  9. 9.
    Civelli, O., Vincent, A., Buri, J. and Scherrer, K., FEBS letters 72,71 (1976).Google Scholar
  10. 10.
    Spohr, G., Granboulan, N., Morel, C., and Scherrer, K., Eur. J. Biochem. 17, 296 (1970).Google Scholar
  11. 11.
    Maundrell, K. and Scherrer, K., Eur. J. Biochem., accepted for publication (1979).Google Scholar
  12. 12.
    Spohr, G., Kayibanda, B., and Scherrer, K., Eur. J. Biochem. 31, 194 (1972).Google Scholar
  13. 13.
    Samarina, O., Lukanidin, E., Molnar, J., and Georgiev, G., J. Mol. Biol. 33,251 (1968).Google Scholar
  14. 14.
    Mauron, A. and Spohr, G., Eur. J. Biochem. 82,619 (1978).Google Scholar
  15. 15.
    Spirin, A., Eur. J. Biochem. 10,20 (1969).Google Scholar
  16. 36.
    Sonenshein, G. and Brawerman, G., Eur. J. Biochem. 73,707 (1977).Google Scholar
  17. 17.
    Yap, S., Strair, R., and Schafritz, D., J. Biol. Chem. 253,4944 (1978).Google Scholar
  18. 18.
    Farmer, S., Ben Ze'ev, A., Benecke, B., and Penman, S., Cell 15,627 (1978).Google Scholar
  19. 19.
    Wengler, G. and Wengler, G., Eur. J. Biochem. 27,162 (1972).Google Scholar
  20. 20.
    McCormick, W. and Penman, S., J. Mol. Biol. 39,315 (1969).Google Scholar
  21. 21.
    Schochetman, G. and Perry, R., J. Mol. Biol. 63,577 (1972).Google Scholar
  22. 22.
    Perry, R. and Kelley, D., J. Mol. Biol. 35,37 (1968).Google Scholar
  23. 23.
    Morel, C., Gander, E., Herzberg, M., Dubochet, J., and Scherrer, K., Eur. J. Biochem. 36,455 (1973).Google Scholar
  24. 24.
    Gander, E., Stewart, A., Morel, C., Scherrer, K., Eur. J. Biochem. 38,443 (1973).Google Scholar
  25. 25.
    Jeffrey, W., J. Biol. Chem. 252,3525 (1977).Google Scholar
  26. 26.
    Schweiger, A. and Mazur, G., FEBS Letters 60,114 (1975).Google Scholar
  27. 27.
    Fukami, H. and Itano, H., Biochemistry 15,3529 (1976).Google Scholar
  28. 28.
    Vincent, A., Civelli, O., Buri, J., and Scherrer, K., FEBS Letters 77,281 (1977).Google Scholar
  29. 29.
    Van Venrooij, W., van Eekelen, C., Jansen, R., and Princen, J., Nature 270, 189 (1977).Google Scholar
  30. 30.
    Dubochet, J., Morel, C., Lebleu, B., and Herzberg, M., Eur. J. Biochem. 36,466 (1973).Google Scholar
  31. 31.
    Favre, A., Morel, C., and Scherrer, K., Eur. J. Biochem. 57,147 (1975).Google Scholar
  32. 32.
    Heindell, H., Lin, A., Paddock, G., Studnicka, G., and Salser, W. Cell 15,43 (1978).Google Scholar
  33. 33.
    Jacobs-Lorena, M. and Baglioni, C., Proc. Nat. Acad. Sci. U.S.A. 69,1425 (1972).Google Scholar
  34. 34.
    Kennedy, D., Siegel, E., and Heywood, S., FEBS Letters 90,209 (1978).Google Scholar
  35. 35.
    Stevenin, J., Gallinaro-Matringe, H., Gattoni, R., and Jacob, M., Eur. J. Biochem. 74,589 (1977).Google Scholar
  36. 36.
    Deimel, B., Louis, Ch., and Sekeris, C., FEBS Letters 73,80 (1977).Google Scholar
  37. 37.
    Northemann, W., Scheurlen, M., Gross, V., and Heinrich, P., Biochem. Biophys. Res. Comm. 76, 1130 (1977).Google Scholar
  38. 38.
    O'Farrel, P., J. Biol. Chem. 250,4007 (1975).Google Scholar
  39. 39.
    Krichevskaya, A. and Georgiev, G., Biochem. Biophys. Acta 194,619 (1969).Google Scholar
  40. 40.
    Martin, T., Billings, P., Levey, A., Ozarslan, S., Quinlan, T., Swift, H., Urbas, L., Cold Spring Harbour Symp. Quant. Biol. 38,921 (1973).Google Scholar
  41. 41.
    Beyer, A., Christensen, M., Walker, B., and Lestourgeon, W., Cell 11,127 (1977).Google Scholar
  42. 42.
    Samarina, O., Aitkhozhina, N., and Besson, J., Mol. Biol. Reports 1,193 (1973).Google Scholar
  43. 43.
    Quinlan, T., Billings, P., and Martin, T., Proc. Nat. Acad. Sci. U.S.A. 71,2632 (1974).Google Scholar
  44. 44.
    Kish, V. and Pederson, T., J. Mol. Biol. 95,227 (1975).Google Scholar
  45. 45.
    Howard, E., Biochemistry 17,3228 (1978).Google Scholar
  46. 46.
    Lukanidin, E., Olnes, S., and Pihl, A., Nature New Biol. 240,90 (1972).Google Scholar
  47. 47.
    Ciolini, F., Thach, S., Birge, C., Safer, B., Merrick, W., and Thach, R., Proc. Nat. Acad. Sci. U.S.A. 73,3040 (1976). Schreier, M. Staehelin, T., Stewart, A., Gander, E. and Scherrer, K., Eur. J. Biochem. 34,213 (1973).Google Scholar
  48. 48.
    Roberts, J. and Herbert, E., Proc. Nat. Acad. Sci. U.S.A. 74,5300 (1977).Google Scholar
  49. 49.
    Roop, D., Nordstrom, J., Tsai, S., Tsai, M., and O'Malley, B., Cell 15,671 (1978).Google Scholar
  50. 50.
    Morel, C., Kayibanda, B., and Scherrer, K., FEBS Letters 18,84 (1971).Google Scholar
  51. 51.
    Barrel, B., Air, G., and Hutchinson, C., Nature 264,34 (1976).Google Scholar
  52. 52.
    Weintraub, H. and Groudine, M., Science 193,848 (1976).Google Scholar
  53. 53.
    Bishop, J., Beckman, J., Campo, M., Hastie, N., Izquierdo, M., and Perlman, S., Phil. Trans, R. Soc. London B 272,147 (1975).Google Scholar
  54. 54.
    Spohr, G., and Scherrer, K., Cell Differentiation 1, 53 (1972).Google Scholar
  55. 55.
    Scherrer, K., Imaizumi-Scherrer, M-T., Reynaud, C.A. and Therwath, A., Mol. Biol. Reports, this issue (1979).Google Scholar

Copyright information

© Dr. W. Junk bv Publishers 1979

Authors and Affiliations

  • Maundrell K. 
    • 1
  • Maxwell E. S. 
    • 1
  • Civelli O. 
    • 1
  • Vincent A. 
    • 1
  • Goldenberg S. 
    • 1
  • Buri J -F. 
    • 1
  • Imaizumi-Scherrer M -T. 
    • 1
  • Scherrer K. 
    • 1
  1. 1.Laboratoire de Biochimie de la DifférenciationInstitut de Recherche en Biologie Moléculaire du C.N.R.S.ParisFrance

Personalised recommendations