Advertisement

Pharmaceutical Chemistry Journal

, Volume 14, Issue 4, pp 214–226 | Cite as

The modern state and prospects for the use of immobilized physiologically active protein substances in medicine (survey)

  • N. I. Larionova
  • V. P. Torchilin
Search for New Drugs
  • 17 Downloads

Keywords

Organic Chemistry Active Protein Protein Substance Modern State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Wolf and K. Ransberger, Enzyme Therapy, Vantage.Google Scholar
  2. 2.
    Enzyme Therapy in Lysosomal Storage Diseases, (J. M. Tager, G. J. M. Hooghwinkel, and W. T. Daems, eds.), Amsterdam (1974).Google Scholar
  3. 3.
    R. J. Desnick, S. R. Thorpe, and M. B. Fiddler, Physiol. Rev.,56, 57–99 (1976).Google Scholar
  4. 4.
    G. Gregoriadis, Nature,275, 695–696 (1978).Google Scholar
  5. 5.
    I. V. Berezin, V. K. Antonov, and K. Martinek, eds., Immobilized Enzymes [in Russian], Vol. 2, Moscow (1976).Google Scholar
  6. 6.
    V. P. Torchilin and K. Martinek, Enzym. Microb. Techn.,1, 74–82 (1979).Google Scholar
  7. 7.
    V. P. Torchilin, A. V. Maksimenko, V. N. Smirnov, et al., Biochim. Biophys. Acta,522, 277–283 (1978).Google Scholar
  8. 8.
    V. P. Torchilin, A. V. Maksimenko, and K. Martinek, Bioorgan. Khim.,5, 295–300 (1979).Google Scholar
  9. 9.
    P. D. Synder, Jr., F. Wold, R. W. Bernlohr, et al., Biochim. Biophys. Acta,350, 432–436 (1974).Google Scholar
  10. 10.
    M. J. Poznansky, in: Biomedical Applications of Immobilized Enzymes and Proteins, (T. M. S. Chang, ed.), Vol. 2, New York (1977), pp. 341–354.Google Scholar
  11. 11.
    G. Gregoriadis, in: Enzyme Therapy in Lysosomal Storage Diseases, (J. M. Tager, G. J. M. Hooghwinkel, and W. T. Daems, eds.), Amsterdam (1974), pp. 131–148.Google Scholar
  12. 12.
    J. Bartholeyns and S. Moore, Science,186, 444–445 (1974).Google Scholar
  13. 13.
    W. Mok, D. E. Chen, and A. Mazur, Fed. Proc.,34, 1458–1460 (1975).Google Scholar
  14. 14.
    P. Bonsen, M. B. Laver, and K. S. Morris, Germ. Offen. Pat. 2606706.Google Scholar
  15. 15.
    K. Bonhard and U. Boyson, Chem. Abstr.,85, No. 130508 (1976).Google Scholar
  16. 16.
    G. Ya. Rozenberg, Dokl. Akad. Nauk SSSR,243, 1320–1323 (1978).Google Scholar
  17. 17.
    J. Bartholeyns and P. Baudhuin, Proc. Natl. Acad. Sci (Wash.),73, 573–576 (1976).Google Scholar
  18. 18.
    T. Kooistra, A. Duursma, J. M. W. Bouma, et al., Acta Biol. Med. Germ.,36, 1763–1776 (1977).Google Scholar
  19. 19.
    J. L. Winkelhake, J. Biol. Chem.,252, 1865–1868 (1977).Google Scholar
  20. 20.
    A. D. Virnik, K. P. Khomyakov, and I. F. Skokova, Usp. Khim.,44, 1280–1307 (1975).Google Scholar
  21. 21.
    H. Ringsdorf, J. Polym. Sci. Polym. Symp.,51, 135–153 (1975).Google Scholar
  22. 22.
    Z. Eshhar, B. Benacerraf, and D. H. Katz, J. Immunol.,114, 871–876 (1975).Google Scholar
  23. 23.
    F. B. Bernath and W. R. Veith, in: Immobilized Enzymes in Food and Microbial Processes (A. Olson and C. Cooney, eds.), New York (1974), pp. 157–185.Google Scholar
  24. 24.
    W. R. Vieth and K. Venkatasubramanian, Meth. Enzymol.,44, 243–263 (1976).Google Scholar
  25. 25.
    J. G. Dillon, C. W. R. Wade, and M. H. Daly, Biotech. Bioeng.,18, 133–139 (1976).Google Scholar
  26. 26.
    I. Inada, H. Shigehisa, O. Masahisa, et al., Enzyme,20, 188–192 (1975).Google Scholar
  27. 27.
    T. I. Bogacheva, O. A. Mirgorodskaya, and B. V. Moskvichev, Biokhimiya,42, 609–615 (1977).Google Scholar
  28. 28.
    V. P. Torchilin, Bioorg. Khim.,4, 556–568 (1978).Google Scholar
  29. 29.
    B. Hulme and J. Hardwicke, Clin. Sci.,34, 515–529 (1968).Google Scholar
  30. 30.
    M. K. Pratten, R. Duncan, and J. B. Lloyd, Biochim. Biophys. Acta,540, 455–462 (1978).Google Scholar
  31. 31.
    J. Kopecek Polimer Med. (Warsaw),7, 191–220 (1977).Google Scholar
  32. 32.
    I. V. Berezin, V. K. Antonova, and K. Martinek, eds., Immobilized Enzymes [in Russian], Vol. 1, Moscow (1976), pp. 126–242.Google Scholar
  33. 33.
    J. J. Marshall, Carbohyd. Res.,49, 389–398 (1976).Google Scholar
  34. 34.
    A. Abuchowski, T. van Es, N. C. Palezuk, et al., J. Biol. Chem.,252, 3578–3581 (1977).Google Scholar
  35. 35.
    A. Abuchowski,. T. van Es, N. C. Palezuk, et al., Fed. Proc.,36, 867 (1977).Google Scholar
  36. 36.
    J. J. Marshall, Trends Biochem. Sci.,3, 79–83 (1978).Google Scholar
  37. 37.
    S.-C. Tam, J. Blumenstein, and J. Wong, Proc. Natl. Acad. Sci. (Wash.),73, 2128–2131 (1976).Google Scholar
  38. 38.
    J. E. Chang and J. T. Wong, Can. J. Biochem.,55, 398–403 (1977).Google Scholar
  39. 39.
    J. Blumenstein, S. C. Tam, J. E. Chang, et al., in: Blood Substitutes and Plasma Expanders, (G. A. Jamieson and T. J. Greenwalt, eds.), New York (1978), pp. 205–212.Google Scholar
  40. 40.
    K. N. Veremeenko, Proteolytic Enzymes of the Pancreas and Their Clinical Use [in Russian], Kiev (1967).Google Scholar
  41. 41.
    K. N. Veremeenko, Enzymes of Proteolysis and Their Inhibitors in Medical Practice [in Russian], Kiev (1971).Google Scholar
  42. 42.
    V. I. Struchkov, A. V. Grigoryan, V. K. Gostishchev, et al., Proteolytic Enzymes in Suppurative Surgery [in Russian], Moscow (1970).Google Scholar
  43. 43.
    L. K. Bogysh and L. Ya. Shvartsman, The Use of Proteolytic Enzymes in Pulmonary Tuberculosis [in Russian], Moscow (1970).Google Scholar
  44. 44.
    L. I. Tolstykh, “Enzymes of proteolysis and their inhibitors in the surgical clinic” Doctoral Dissertation [in Russian], Moscow (1977).Google Scholar
  45. 45.
    B. Svensson, in: Proceedings of Ninth International Congress of Biochemistry, Stockholm (1973), p. 119Google Scholar
  46. 46.
    O. B. Kinstler and L. V. Kozlov, Biokhimiya,42, 1074–1081 (1977).Google Scholar
  47. 47.
    G. M. Lindenbaum, O. A. Mirgorodskaya, B. V. Moskvichev, et al., Khim. Farm. Zh., No. 7, 81–86 (1977).Google Scholar
  48. 48.
    R. L. Foster, Experientia,31, 772–773 (1975).Google Scholar
  49. 49.
    J. J. Marshall and M. L. Rabinowitz, Arch. Biochem.,167, 777–779 (1975).Google Scholar
  50. 50.
    J. J. Marshall and M. L. Rabinowitz, J. Biol. Chem.,251, 1081–1087 (1976).Google Scholar
  51. 51.
    B.-U. von Specht, H. Seinfeld, and W. Brendel, Hoppe-Seyler's Z. Physiol. Chem.,354, 1659–1660 (1973).Google Scholar
  52. 52.
    B.-U. von Specht and W. Brendel, Biochem. Biophys. Acta,484, 109–114 (1977).Google Scholar
  53. 53.
    G. M. Lindenbaum, T. I. Bogacheva, O. A. Mirgorodskaya, et al., Prikl. Biokhim. Mikrobiol.,13, 685–691 (1977).Google Scholar
  54. 54.
    G. P. Ivanova, O. A. Mirgorodskaya, E. F. Panarin, et al., Bioorgan. Khim.,3, 127–132 (1977).Google Scholar
  55. 55.
    G. Vegarud and T. B. Christensen, Biotechn. Bioeng.,17, 1391–1397 (1975).Google Scholar
  56. 56.
    J. Lasch, Eur. J. Biochem.,63, 591–598 (1976).Google Scholar
  57. 57.
    V. P. Torchilin, I. L. Reizer, V. N. Smirnov, et al., Bioorg. Khim.,2, 1252–1257 (1976).Google Scholar
  58. 58.
    V. P. Torchilin, I. L. Reizer, E. G. Tishchenko, et al., Ibid., 1687–1694. (1976).Google Scholar
  59. 59.
    V. P. Torchilin, E. G. Tischenko, and V. N. Smirnov, J. Solid-Phase Biochem.,2, 19–29 (1977).Google Scholar
  60. 60.
    L. G. Ginger and A. N. Mather, U.S. Patent No. 3980772.Google Scholar
  61. 61.
    G. M. Lindenbaum, “Investigation of the chemical modification of certain proteolytic enzymes by water-soluble dextrans” Author's Abstract of Candidate's Dissertation [in Rusaian], Leningrad (1978).Google Scholar
  62. 62.
    B.-U. von Specht, M. Wahl, H. J. Kolb, et al., Arch. Int. Pharmacodyn.,213, 242–250 (1975).Google Scholar
  63. 63.
    J. J. Marshall, J. D. Humphreys, and S. L. Abramson, FEBS Lett.,83, 249–252 (1977).Google Scholar
  64. 64.
    R. F. Sherwood, J. K. Baird, T. Atkinson, et al., Biochem. J.,164, 461–464 (1977).Google Scholar
  65. 65.
    J. S. Holcenberg, G. Schmer, D. C. Teller, et al., J. Biol. Chem.,250, 4165–4170 (1975).Google Scholar
  66. 66.
    B. Geiger, B.-U. von Specht, and R. Arnon, Eur. J. Biochem.,73, 141–147 (1977).Google Scholar
  67. 67.
    J. J. Marshall and M. L. Rabinowitz, Biotech. Bioeng.,18, 1325–1329 (1976).Google Scholar
  68. 68.
    A. Abuchowski, J. R. McCoy, N. C. Palczuk, et al., J. Biol. Chem.,252, 3582–3586 (1977).Google Scholar
  69. 69.
    R. Vogel, I. Trautschold, and E. Werle, Natural Proteinase Inhibitors, New York (1958).Google Scholar
  70. 70.
    G. L. Haberland and P. Matis, Neue Aspekte der Trasylol Therapie, Vol. 3, Stuttgart (1969).Google Scholar
  71. 71.
    G. L. Haberland and D. H. Lewis, Ibid., Vol. 6 (1973).Google Scholar
  72. 72.
    W. Brendel and G. L. Haberland, Ibid., Vol. 5 (1972).Google Scholar
  73. 73.
    V. Andreka, E. Shiposh, and M. Aleksi, Venger. Farmakoter., No. 3, 94–100 (1976).Google Scholar
  74. 74.
    H. Fritz, K.-H. Oppitz, D. Meckl, et al., Hoppe-Seyler's Z. Physiol. Chem.,350, 1541–1550 (1969).Google Scholar
  75. 75.
    N. I. Larionova, N. F. Kazanskaya, and I. Yu. Sakharov, Biokhimiya,42, 1237–1243 (1977).Google Scholar
  76. 76.
    N. I. Larionova, N. F. Kazanskaya, and I. Yu. Sakharov, Ibid.,43, 880–886 (1978).Google Scholar
  77. 77.
    C. F. Odya, Y. Levin, and E. G. Erdos, Biochem. Pharmacol.,27, 173–179 (1978).Google Scholar
  78. 78.
    N. I. Larionova, N. F. Kazanskaya, and I. Yu. Sakharov, Biokhimiya,44, 350–358 (1979).Google Scholar
  79. 79.
    N. I. Larinnova, I. Yu. Sakharov, N. P. Kazanskaya, et al., in: Future Directions for Enzyme Engineering, (L. B. Wingard, I. V. Berezin, and A. A. Klyosov, eds.), New York (1980), pp. 1012–1021.Google Scholar
  80. 80.
    K. J. Armstrong, M. W. Noal, and J. E. Stouffer, Biochem. Biophys. Res. Commun.,47, 354–360 (1972).Google Scholar
  81. 81.
    H. M. Katzen and G. I. Vlahakes, Science,179, 1142–1143 (1973).Google Scholar
  82. 82.
    B.-U. von Specht, H. J. Kolb, and R. Renner, Hoppe-Seyler's Z. Physiol. Chem.,359, 231–238 (1978).Google Scholar
  83. 83.
    F. Suzuki, Y. Daikuhara, M. Ono, et al., Endocrinology,90, 1220–1230 (1972).Google Scholar
  84. 84.
    J. A. Galloway and M. A. Root, Diabetes,21, 637–648 (1972).Google Scholar
  85. 85.
    Y. Shigeta, M. Shichiri, A. Okada, et al., Endocrinology,91, 320–322 (1972).Google Scholar
  86. 86.
    V. Chytry, A. Vrana, and J. Kopecek, Makromolek. Chem.,179, 329–336 (1978).Google Scholar
  87. 87.
    Y. Sakamoto, Y. Akanuma, K. Kosaka, et al., Biochim. Biophys. Acta,498, 102–113 (1977).Google Scholar
  88. 88.
    V. P. Torchilin, E. V. Il'ina, A. V. Mazaev, et al., J. Solid-Phase Biochem.,2, 187–193 (1978).Google Scholar
  89. 89.
    P. Cuatrecasas, Biochemistry,63, 450–457 (1969).Google Scholar
  90. 90.
    G. Gregoriadis, Meth. Enzymol.,44, 218–227, 698–709 (1976).Google Scholar
  91. 91.
    G. Dapergolas, E. D. Neerunjun, and G. Gregoriadis, FEBS Lett.,63, 235–239 (1976).Google Scholar
  92. 92.
    T. Kataoka, J. R. Williamson, and S. C. Kinsky, Biochim. Biophys. Acta,298, 158–179 (1973).Google Scholar
  93. 93.
    L. D. Steger and R. J. Desnick, Ibid.,464, 530–546 (1977).Google Scholar
  94. 94.
    I. Braidman and G. Gregoriadis, Biochem. Soc. Trans.,4, 259–261 (1976).Google Scholar
  95. 95.
    C. M. Colley and B. E. Ryman, Biochim. Biophys. Acta,451, 417–425 (1976).Google Scholar
  96. 96.
    H. M. Patel and B. E. Ryman, Biochem. Soc. Trans.,2, 1014–1017 (1974).Google Scholar
  97. 97.
    G. Gregoriadis and B. E. Ryman, Eur. J. Biochem.,24, 485–491 (1972).Google Scholar
  98. 98.
    D. A. Tyrrel, B. E. Ryman, B. R. Keeton, et al., Brit. Med. J.,2, 88 (1976).Google Scholar
  99. 99.
    C. M. Cohen, G. Weissmann, S. Hoffstein, et al., Biochemistry,15, 452–460 (1976).Google Scholar
  100. 100.
    G. Sessa and G. Weissman, J. Biol. Chem.,245, 3295–3301 (1970).Google Scholar
  101. 101.
    W. E. Magee, C. W. Goff, J. Schoknecht, et al., J. Cell Biol.,63, 492–504 (1974).Google Scholar
  102. 102.
    G. Gregoriadis and B. E. Ryman, Biochem. J.,129, 123–133 (1972).Google Scholar
  103. 103.
    G. Gregoriadis, D. Putnam, L. Louis, and D. Neerunjun, Ibid.,140, 323–330 (1974).Google Scholar
  104. 104.
    G. Eytan, M. J. Matheson, and E. Racker, FEBS Lett.,57, 121–125 (1975).Google Scholar
  105. 105.
    W. R. Redwood and B. C. Patel, Biochim. Biophys. Acta,363, 70–85 (1974).Google Scholar
  106. 106.
    I. R. McDougall, J. K. Dunnick, and M. L. Goris, J. Nucl. Med.,16, 488–491 (1975).Google Scholar
  107. 107.
    R. L. Juliano and D. Stamp, Biochem. Biophys. Res. Commun.,63, 651–658 (1975).Google Scholar
  108. 108.
    M. M. Jonah, E. A. Cerny, and Y. E. Rahman, Biochim. Biophys. Acta,401, 336–348 (1975).Google Scholar
  109. 109.
    W. E. Magee, M. L. Talcott, S. X. Straub, et al., Ibid.,451, 610–618 (1976).Google Scholar
  110. 110.
    V. J. Caride, Science,198, 735–738 (1977).Google Scholar
  111. 111.
    G. Gregoriadis and D. E. Neerunjun, Eur. J. Biochem.,47, 179–185 (1974).Google Scholar
  112. 112.
    G. Gregoriadis, New Engl. J. Med.,295, 704–710, 765–770 (1976).Google Scholar
  113. 113.
    J. K. Dunnick, I. R. McDougall, S. Aragon, et al., J. Nucl. Med.,16, 483–487 (1975).Google Scholar
  114. 114.
    D. S. Deshmukh, W. D. Bear, H. M. Wishiewski, et al., Biochem. Biophys. Res. Commun.,82, 328–334 (1978).Google Scholar
  115. 115.
    Liposomes and Their Uses in Biology and Medicine, (D. Papahadjopoulos, ed.), New York (1978).Google Scholar
  116. 116.
    E. D. Neerunjun and G. Gregoriadis, Biochem. Soc. Trans.,4, 133–134 (1976).Google Scholar
  117. 117.
    V. M. C. Maderia, Biochim. Biophys. Acta.,499, 202–211 (1977).Google Scholar
  118. 118.
    M. C. Pinkelstein, J. Maniscalco, and G. Weissmann, Analyt. Biochem.,89, 400–407 (1978).Google Scholar
  119. 119.
    P. E. Belchetz, I. P. Braidman, J. C. W. Crawley, et al., Lancet,2, 116–117 (1977).Google Scholar
  120. 120.
    E. Ang, R. Glew, and G. Ihler, Exp. Cell. Res.,104, 430–434 (1977).Google Scholar
  121. 121.
    G. Ihler, R. Glew, and F. Schnure, Proc. Natl. Acad. Sci. (Wash.),70, 2663–2666 (1973).Google Scholar
  122. 122.
    G. Ihler and R. Glew, in: Biomedical Applications of Immobilized Enzymes and Proteins, (T. M. S. Chang, ed.), Vol. 1, New York (1977), pp. 219–226.Google Scholar
  123. 123.
    S. J. Updike, R. T. Wakamiya, and E. N. Lightfoot, Jr., Science,193, 681–683 (1976).Google Scholar
  124. 124.
    R. J. Desnick, M. B. Fiddler, S. R. Thorpe, et al., in: Biomedical Applications of Immobilized Enzymes and Proteins, (T. M. S. Chang, ed.), Vol. 1, New York (1977), pp. 227–244.Google Scholar
  125. 125.
    G. L. Dale and E. Beutler, Proc. Natl. Acad. Sci. (Wash.),73, 4672–4764 (1976).Google Scholar
  126. 126.
    G. Gregoriadis, Nature,265, 407–411 (1977).Google Scholar
  127. 127.
    E. P. Goldberg, in: Polymeric Drugs, New York (1978), pp. 239–262 (1978).Google Scholar
  128. 128.
    G. Ashwell and A. B. Morell, Adv. Enzymol.,41, 99–128 (1974).Google Scholar
  129. 129.
    W. E. Pricer, Jr., and G. Ashwell, J. Biol. Chem.,246, 4825–4833 (1971).Google Scholar
  130. 130.
    S. C. Yu and J. C. Gan, Arch. Biochem.,179, 477–485 (1977).Google Scholar
  131. 131.
    S. C. Yu and J. C. Gan, Int. J. Biochem.,9, 107–115 (1978).Google Scholar
  132. 132.
    J. C. Rogers and S. T. Kornfeld, Biochem. Biophys. Res. Commun.,45, 622–629 (1971).Google Scholar
  133. 133.
    G. Schmer, J. S. Holcenberg, and J. Roberts, Biochim. Biophys. Acta,538, 397–405 (1978).Google Scholar
  134. 134.
    G. Wilson, J. Biol. Chem.,253, 2070–2072 (1978).Google Scholar
  135. 135.
    J. W. Marsh, J. Denis, and J. C. Wriston, Ibid.,252, 7678–7684 (1977).Google Scholar
  136. 136.
    R. J. Stockert, A. G. Morell, and I. H. Scheinberg, Biochem. Biophys. Res. Commun.,68, 988–993 (1976).Google Scholar
  137. 137.
    C. J. Steer, F. S. Furbish, J. A. Barranger, et al., FEBS Lett.,91, 202–205 (1978).Google Scholar
  138. 138.
    S. Hickman and E. F. Neufeld, Biochem. Biophys. Res. Commun.,49, 992–999 (1972).Google Scholar
  139. 139.
    C. de Duve, T. de Barsy, B. Poole, et al., Biochem. Pharmacol.,23, 2495–2531 (1974).Google Scholar
  140. 140.
    D. H. Boldt, S. F. Speckart, R. L. Richards, et al., Biochem. Biophys. Res. Commun.,74, 208–214 (1977).Google Scholar
  141. 141.
    C. R. Alving, K. C. Joseph, and R. Wistar, Biochemistry,13, 4818–4824 (1974).Google Scholar
  142. 142.
    R. W. Bussian and J. C. Wriston, Jr., Biochim. Biophys. Acta,471, 336–349 (1977).Google Scholar
  143. 143.
    A. Surolia and B. K. Bachhawat, Ibid.,497, 760–765.Google Scholar
  144. 144.
    G. R. Rowland, G. J. O'Niell, and D. A. L. Davies, Nature,255, 488 (1975).Google Scholar
  145. 145.
    L. B. Margolis and N. A. Dorfman, Byull. Eksp. Biol. Med., No. 1, 53–57 (1977).Google Scholar
  146. 146.
    G. Gregoriadis and E. D. Neerunjun, Biochem. Biophys. Res. Commun.,65, 537–544 (1975).Google Scholar
  147. 147.
    M. Finkelstein and G. Weissmann, J. Lipid Res.,19, 285–303 (1978).Google Scholar
  148. 148.
    V. P. Torchilin, V. S. Gol'dmakher, and V. N. Smirnov, Bioorg. Khim.,4, 1560–1562 (1978).Google Scholar
  149. 149.
    V. P. Torchilin, Ko Ban-An, V. R. Berdichevskii, et al., Dokl. Akad. Nauk SSSR,246, 746–749 (1979).Google Scholar
  150. 150.
    R. Langer and J. Folkman, in: Polymeric Delivery Systems, (H. G. Elias, ed.), New York (1978), pp. 175–196.Google Scholar
  151. 151.
    R. Langer and J. Foldman, Nature,263, 797–800 (1976).Google Scholar
  152. 152.
    N. R. Kil'deeva, N. F. Kazanskaya, and A. D. Virnik, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.,22, 225–229 (1979).Google Scholar
  153. 153.
    V. P. Torchilin, E. G. Tischenko, V. N. Smirnov, et al., J. Biomed. Mat. Res.,11, 223–235 (1977).Google Scholar
  154. 154.
    V. P. Torchilin, A. S. Bobkova, B. S. Lebedev, et al., Khim. Farm. Zh., No. 3, 10–13 (1976).Google Scholar
  155. 155.
    M. B. Wilson and P. K. Nakane, J. Immunol. Meth.,12, 171–181 (1976).Google Scholar
  156. 156.
    E. Junowicz and S. E. Charm, Biochim. Biophys. Acta,428, 157–165 (1976).Google Scholar
  157. 157.
    E. I. Chazov, A. V. Mazaev, V. P. Torchilin, et al., Kardiologiya, No. 11, 139–142 (1977).Google Scholar
  158. 158.
    E. I. Chazov, A. V. Mazaev, V. P. Torchilin, et al., Thrombos. Res.,12, 809–814 (1978).Google Scholar
  159. 159.
    V. P. Torchilin, B. S. Lebedev, A. V. Mazaev, et al., Kardiologiya, No. 9, 102–105 (1976).Google Scholar
  160. 160.
    F. R. Bernath, L. S. Olanoff, and W. R. Vieth, in: Biomedical Applications of Immobilized Enzymes and Proteins, (T. M. S. Chang, ed.), Vol. 1, New York (1977), pp. 351–375.Google Scholar
  161. 161.
    D. Cooney, H. Weetall, and E. Long, Biochem. Pharmacol.,24, 503–515 (1975).Google Scholar
  162. 162.
    H. Hyden, Arzneim. Forsch.,21, 1671–1675 (1971).Google Scholar
  163. 163.
    D. Sampson, T. Han, L. S. Hersh, et al., J. Surg. Oncol.,6, 39–48 (1974).Google Scholar
  164. 164.
    G. Brunner and H. Losgen, in: Enzyme Engineering (E. K. Pye and H. H. Weetall, eds.), Vol. 3, New York (1978), pp. 391–396.Google Scholar
  165. 165.
    L. S. Olanoff, F. R. Bernath, and K. Venkatasubramanian, Am. Chem. Soc. Polymer Prepr.,16, 203–208 (1975).Google Scholar
  166. 166.
    C. Horvath, A. Sazdi, and J. S. Woods, J. Appl. Physiol.,34, 181–187 (1973).Google Scholar
  167. 167.
    H. Salmona, C. Saronio, and I. Bartosek, in: Insolubilized Enzymes, (M. Salmona, C. Saronio, and S. Garattini, eds.), New York (1974), pp. 189–200.Google Scholar
  168. 168.
    R. J. C. Ko and L. S. Hersh, J. Biomed. Mat. Res.,10, 249–258 (1976).Google Scholar
  169. 169.
    J. P. Allison, L. Davidson, A. Gutierrez-Hartman, et al., Biochem. Biophys. Res. Commun.,47, 66–73 (1972).Google Scholar
  170. 170.
    L. S. Olanoff, Trans. Am. Soc. Artif. Intern. Organs,21, 156–164 (1975).Google Scholar
  171. 171.
    D. Sampson, T. Han, and L. S. Hersh, in: Medical Primatology, Part 1, Basel (1972), pp. 134–141.Google Scholar
  172. 172.
    J. C. Venter, B. R. Venter, J. E. Dixon, et al., Biochem. Med.,12, 79–91 (1975).Google Scholar
  173. 173.
    W. Marconi, in: Enzyme Engineering, (G. B. Broun, G. Manecke, and L. B. Wingard, Jr., eds.), Vol. 4, New York (1978), pp. 179–186.Google Scholar
  174. 174.
    P. H. Plotz, P. D. Berk, B. F. Scharschmidt, et al., J. Clin. Invest.,53, 778–785 (1974).Google Scholar
  175. 175.
    B. F. Scharschmidt, P. H. Plotz, P. D. Berk, et al., Ibid., 786–795.Google Scholar
  176. 176.
    B. F. Scharschmidt, J. F. Martin, L. J. Shapiro, et al., Clin. Res.,23, 256A (1975).Google Scholar
  177. 177.
    B. F. Scharschmidt, J. F. Martin, L. J. Shapiro, et al., Gastroenterology,69, 864 (1975).Google Scholar
  178. 178.
    B. F. Scharschmidt, J. F. Martin, P. H. Plotz, et al., in: Enzyme Engineering, (E. K. Pye and H. H. Weetall, eds.), Vol. 3, New York (1978), pp. 427–429.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • N. I. Larionova
    • 1
    • 2
  • V. P. Torchilin
    • 1
    • 2
  1. 1.Laboratory of Molecular Biology and Bioorganic Chemistry of Moscow UniversityUSSR
  2. 2.All-Union Cardiological Scientific Center of the Academy of Medical Sciences of the USSRMoscow

Personalised recommendations