Letters in Mathematical Physics

, Volume 27, Issue 4, pp 243–252 | Cite as

Connection formulae for the first Painlevé transcendent in the complex domain

  • A. A. Kapaev
  • A. V. Kitaev


We have found, via the isomonodromy deformation method, a complete asymptotic description of the first Painlevé transcendent in the complex domain.

Mathematics Subject Classifications (1991)

34E05 34A20 34E20 42A38 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garnier, R.,Ann. Sci. Ecole Norm. Sup. 29, 1–126 (1912).Google Scholar
  2. 2.
    Jimbo, M. and Miwa, T.,Physica D 2, 407 (1981).Google Scholar
  3. 3.
    Kapaev, A. A.,Differential Equations 24, 1107 (1988).Google Scholar
  4. 4.
    Joshi, N. and Kruskal, M. D., Connection results for the first Painlevé equation, School of Math. Univ. of New South Wales, Applied Math. Preprint, AM 91/4 (1991).Google Scholar
  5. 5.
    Kitaev, A. V., Mathematical problems of wave propagation theory. 19,Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov 179, 101–109 (1989).Google Scholar
  6. 6.
    Its, A. R. and Novokshonov, V. Yu.,The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Math. 1191, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986.Google Scholar
  7. 7.
    Boutroux, P.,Ann. Sci. Ecole Norm. Sup. 30, 265–375 (1913);31, 99–159 (1914).Google Scholar
  8. 8.
    Joshi, N. and Kruskal, M. D.,Phys. Lett. A 130, 129–137 (1988).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • A. A. Kapaev
    • 1
  • A. V. Kitaev
    • 1
  1. 1.Department of MathematicsInstitute of Aircraft Instrument EngineeringSt. PetersburgRussia

Personalised recommendations