Strength of Materials

, Volume 24, Issue 1, pp 51–58 | Cite as

Deformation of composite beams and plates under transverse impact

  • V. M. Vasil'ev
  • V. V. Partsevskii
  • S. I. Snisarenko
Scientific-Technical Section


A theoretical and experimental approach to an investigation of transient loading and deformation of composite beams and plates was developed for the purpose of creating structures best resisting impact loading. The problem of transverse impact on beams and plates is formulated and solved on the basis of the finite-element method with the use of Timoshenko's shear theory and finite-difference method for orthotropic composite plates. The experimental investigations were conducted by means of a strain-gauge complex. It is shown experimentally and by calculations that minimum deformations under transverse impact are realized for reinforcement angles approaching the transversal isotropic scheme of placing fibers in layers of the composite, and fracture should be expected in the form of delaminations near the impact site and near the support fastenings.


Experimental Investigation Experimental Approach Impact Loading Composite Plate Composite Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. L. Doubnis, “Calculation of freely supported orthotropic plates for static and dynamic loads,” Raket. Tekh. Kosmonav.,19, No. 7, 119–128 (1981).Google Scholar
  2. 2.
    A. E. Bogdanovich and É. V. Yarve, “Numerical calculation of impact deformation of laminated composite plates,” Mekh. Kompositn. Mater., No. 5, 804–820 (1989).Google Scholar
  3. 3.
    I. N. Preobrazhenskii, P. F. Sabodash, and V. K. Rimskii, “Numerical modeling of dynamic contact problems for composite plates,” Mekh. Kompositn. Mater., No. 6, 1025–1029 (1981).Google Scholar
  4. 4.
    Kh. Kh. Kyaérdi and L. Yu. Poverus, “Dynamics of laminated plates,” Tr. Tallin. Politekh. Inst., No. 487, 69–79 (1980).Google Scholar
  5. 5.
    V. D. Koshur, “Nonlinear discrete structural models and calculation of the dynamic reaction of multiple-layer composite panels under intense distributed and localized impact loads,” Mekh. Kompositn. Mater., No. 4, 665–670 (1987).Google Scholar
  6. 6.
    V. S. Sarkisyan, V. V. Vardanyan, and A. V. Keropyan, “Solution of the problem of transverse elastic impact by a sphere on a rectangular plate by the finite-element method,” Uchen. Zap. Erevan. Univ., No. 1, 140–143 (1980).Google Scholar
  7. 7.
    R. B. Rikards and S. I. Snisarenko, “Impact deformation of hybrid composite beams,” Mekh. Kompositn. Mater., No. 1, 97–103 (1985).Google Scholar
  8. 8.
    S. I. Snisarenko, “Deformation of composite beams under transverse impact,” Probl. Prochnosti, No. 2, 114–119 (1990).Google Scholar
  9. 9.
    C. A. Ross, L. E. Malvern, and E. L. Jerome, “Modeling of interlaminar delamination using a finite element method” in: Proc. SEM Spring Conf. Exp. Mex. (June 9–14) (1987), pp. 360–368.Google Scholar
  10. 10.
    H. Aggaur and C. T. Sun, “Finite element analysis of a laminated composite plate subjected to circularly distributed central impact loading,” Int. J. Comp. Struct.,128, No. 6, 729–736 (1988).Google Scholar
  11. 11.
    T. Wu. Hsi-Yung and Chang Fu-Kuo, “Transient dynamic analysis of laminated plates subjected to transverse impact,” Comput. Struct.,31, No. 3, 453–466 (1989).Google Scholar
  12. 12.
    I. I. Anik'ev, M. I. Mikhailova, A. S. Spisovskii, et al., “Reaction of a five-layer glass-polyethylene panel to a static shock-wave load,” Mekh. Kompositn. Mater., No. 1, 146–151 (1983).Google Scholar
  13. 13.
    N. Takeda, R. L. Sierakowski, and L. E. Malvern, “Wave propagation experiments on ballistically impacted composite laminates,” J. Composite Mater.,15, No. 3, 157–174, (1981).Google Scholar
  14. 14.
    J. Winkel and D. F. Adams, “Instrumented drop weight impact testing of cross-ply and fabric composites,” Composites,16, No. 4, 268–278 (1985).Google Scholar
  15. 15.
    B. A. O'Kane and P. P. Benham, “Damage thresholds for low velocity impact on aircraft structural composite,” Aeronautical J.,90, No. 899, 368–372 (1986).Google Scholar
  16. 16.
    G. Marom, E. Drukker, and A. Weinberg, “Impact behavior of carbon-Kevlar hybrid composites,” Composites,17, No. 2, 150–153 (1986).Google Scholar
  17. 17.
    I. M. Daniel and S. C. Wooh, “Deformation and damage of composite plates under impact loading” in: Proc. Intern. Symp. on Composite Mater. and Struct. (1986), pp. 630–637.Google Scholar
  18. 18.
    C. K. L. Davies, S. Turner, and K. H. Williamson, “Flexed plate impact testing of carbon fibre-reinforced polymer composites,” Composites,4, No. 4, 279–285 (1985).Google Scholar
  19. 19.
    H. Y. Ching and B. K. Rodney, “A study of damage in composite panels produced by the hypervelocity method,” Int. J. Impact Eng.,5, 729–738 (1987).Google Scholar
  20. 20.
    R. B. Rikards, Finite-Element Method in Shell and Plate Theory [in Russian], Zinatne, Riga (1988).Google Scholar
  21. 21.
    E. G. Goloskov and A. P. Filippov, Transient Fluctuations of Deformable Systems [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  22. 22.
    L. I. Turchak, Fundamentals of Numerical Methods [in Russian], Nauka, Moscow (1987).Google Scholar
  23. 23.
    V. M. Vasil'ev, Mechanics of Composite Structures [in Russian], Mashinostroenie, Moscow (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. M. Vasil'ev
    • 1
    • 2
  • V. V. Partsevskii
    • 1
    • 2
  • S. I. Snisarenko
    • 1
    • 2
  1. 1.Daugavpils
  2. 2.Moscow

Personalised recommendations