Skip to main content
Log in

Topological incremental scheme for calculating13C NMR chemical shifts in polysubstituted benzenes with substituents of one kind

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new topological approach to predicting the13C NMR chemical shifts of polysubstituted benzenes has been proposed (in the example case of compounds with substituents of one kind of the type C6H6−nXn). The collective interactions of several substituents X [X=CH3, C2H5, iso-C3H7, CF3, COOH, f, Cl, Br, Si(CH3)3] have been expressed in the framework of a regression treatment in terms of two-particle increments. The chemical shift of each carbon atom has been represented in the form of an equation containing 17 parameters. The calculation scheme can be transformed and expanded for use even in the calculation of the spectra of compounds not previously studied. The calculated shifts for some previously investigated compounds and some compounds not previously investigated have been presented. The error in reproducing chemical shifts is equal to 0.2–0.3 ppm (and may be as high as 0.8 ppm for only a few measurements).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York (1972).

    Google Scholar 

  2. F. W. Wehrli and T. Wirthlin, Interpretation of Carbon-13 NMR Spectra, Heyden, London (1976).

    Google Scholar 

  3. W. Bremser, Angew. Chem., Int. Ed. Engl.,27, No. 2, 247–260 (1988).

    Google Scholar 

  4. G. C. Levy and G. L. Nelson, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, Wiley-Interscience, New York (1972) [Russian translation: Mir, Moscow (1975)].

    Google Scholar 

  5. E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy. High-Resolution Methods and Applications in Organic Chemistry and Biochemistry, Chimie, New York (1987).

    Google Scholar 

  6. V. I. Dostovalova, F. K. Velichko, T. T. Vasil'eva, et al., Org. Magn. Reson.,16, No. 4, 251–260 (1981).

    Google Scholar 

  7. D. F. Ewing, Org. Magn. Reson.,12, No. 9, 499–524 (1979).

    Google Scholar 

  8. J. Bromilov, R. T. C. Brownlee, D. Craik, et al., U. Org. Chem.,45, No. 12, 2429–2438 (1980).

    Google Scholar 

  9. J. Bromilov, R. T. C. Brownlee, D. Craik, and M. Sadek, Magn. Reson. Chem.,24, No. 10, 862–871 (1986).

    Google Scholar 

  10. H. M. Relles, J. Magn. Reson.,39, No. 3, 481–485 (1980).

    Google Scholar 

  11. J. Knuutinen, R. Laatikainen, and J. Paasivirta, and J. PaasivirtaOrg. Magn. Reson.,14, No. 5, 360–365 (1980).

    Google Scholar 

  12. D. K. Dalling, K. H. Ladner, D. M. Grant, and W. R. Woolfenden, J. Am. Chem. Soc.,99, No. 22, 7142–7150 (1977).

    Google Scholar 

  13. Y. Takeuchi, H. Furuyama, S. Fukushi, and S. Fujiwara, J. Chem. Soc. Perkin Trans. II, No. 2, 175–177 (1985).

    Google Scholar 

  14. O. Sudmeijer, A. E. Wilson, and G. R. Hays, Org. Magn. Reson.,22, No. 7, 459–463 (1984).

    Google Scholar 

  15. W. R. Woolfenden and D. M. Grant, J. Am. Chem. Soc.,88, No. 7, 1496–1502 (1966).

    Google Scholar 

  16. 13C Data Bank, Vol. 1, Bruker Physik (1976).

  17. H. Nery, D. Canet, B. Azoui, et al., Org. Magn. Reson.,10, 240–244 (1977).

    Google Scholar 

  18. M. Mishima, J. Fujio, R. Takeda,and T. Tsuno, Mem. Fac. Sci., Kyushu Univ., Sec. C,11 No. 1, 97–118 (1978).

    Google Scholar 

  19. T. Kaneda, T. Otsubo, H. Horita, and S. Misumi, Bull. Chem. Soc. Jpn.,53, No. 4, 1015–1018 (1980).

    Google Scholar 

  20. D. J. Iverson, G. Hunter, J. F. Blount, et al., J. Am. Chem. Soc.,103, No. 20 6073–6083 (1981).

    Google Scholar 

  21. W. B. Smith and D. L. Deavenport, J. Magn. Reson.,7, No. 3, 364–369 (1972).

    Google Scholar 

  22. J. M. Briggs and E. W. Randall, J. Chem. Soc. Perkin Trans. II, No. 13, 1789–1791 (1973).

    Google Scholar 

  23. L. Ernst and V. Wrya, J. Magn. Reson.,28, No. 3, 373–375 (1977).

    Google Scholar 

  24. M. A. Hamza, G. Serratrice, and J.-J. Delpuech, Org. Magn. Reson.,16, No. 2, 98–102 (1981).

    Google Scholar 

  25. K. Takahashi, A. Yoshino, K. Hosokawa, and H. Muramatsu, Bull. Chem. Soc. Jpn.,58, No. 2, 755–756 (1985).

    Google Scholar 

  26. J. Siegel, A. Gutierrez, W. B. Schweizer, et al., J. Am. Chem. Soc.,108, No. 7, 1569–1575 (1986).

    Google Scholar 

  27. D. Bruck and M. Rabinovitz, Tetrahedron Lett., No. 47, 4121–4124 (1977).

    Google Scholar 

  28. J. Schraml, V. Chvalovsky, M. Mägi, et al., J. Organomet. Chem.,120, No. 1, 41–47 (1976).

    Google Scholar 

  29. V. I. Dostovalova, T. T. Vasil'eva, F. K. Velichko, Izv. Akad. Nauk SSSR, Ser. Khim., No. 12, 2770–2776 (1988).

    Google Scholar 

  30. V. I. Dostovalova, F. K. Velichko, and R.Kh. Freidlina, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 773–778 (1987).

    Google Scholar 

  31. S. Fliszar, Charge Distributions and Chemical Effects, Springer Verlag, New York (1983).

    Google Scholar 

  32. S. Ueji, Tetrahedron Lett.,21, No. 5, 475–478 (1980).

    Google Scholar 

  33. V. I. Dostovalova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 1, 58–60 (1990).

    Google Scholar 

Download references

Authors

Additional information

V. I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Academy of Sciences of the USSR. Translated from Zhurnal Strukturnoi Khimii, Vol. 32, No. 2, pp. 62–71, March–April, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dostovalova, V.I., Fedorov, L.A. Topological incremental scheme for calculating13C NMR chemical shifts in polysubstituted benzenes with substituents of one kind. J Struct Chem 32, 208–214 (1991). https://doi.org/10.1007/BF00777189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00777189

Keywords

Navigation