Pharmaceutical Chemistry Journal

, Volume 26, Issue 7–8, pp 565–575 | Cite as

Organophosphorus compounds with anti-inflammatory and analgesic activity (review)

  • V. Kh. Syundyukova
  • E. G. Neganova
  • B. K. Beznosko
  • E. N. Tsvetkov
Molecular-Biological Problems of the Creation of Drugs and Study of the Mechanism of their Action

Keywords

Organic Chemistry Analgesic Activity Organophosphorus Compound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. G. Vogralik, Hormones and Hormonal Drugs in Clinical Practice for Internal Diseases [in Russian], Moscow (1974).Google Scholar
  2. 2.
    Ya. A. Sigidin, G. Ya. Shvarts, S. S. Arzamastsev, and S. S. Liberman, Drug Therapy for Inflammation [in Russian], Moscow (1988).Google Scholar
  3. 3.
    M. D. Mashkovskii, “Modern analgesics and endogenic mechanisms for pain and anesthetization,” Vestn. Akad. Medits. Nauk SSSR, No. 9, 52–57 (1980).Google Scholar
  4. 4.
    F. P. Trinus and B. M. Klebanov, Fiziol. Aktivnye Veshch., No. 12, 3–12 (1980).Google Scholar
  5. 5.
    F. P. Trinus, B. M. Klebanov, I. M. Gandzha, and R. D. Seifulla, Pharmocological Regulation of Inflammation [in Russian], Zdorov'ya, Kiev (1987).Google Scholar
  6. 6.
    G. Ya. Shvarts, Khim.-farm. Zh., No. 11, 1317–1326 (1988).Google Scholar
  7. 7.
    M. I. Kabachnik, in: Organophosphorus Compounds [in Russian], Moscow (1967), pp. 14–17.Google Scholar
  8. 8.
    K. Issleib, K. P. Dopfer, and A. Balszuweit, Phosphorus and Sulfur,30, 633–636 (1987).Google Scholar
  9. 9.
    Bo Oberg, Pharmac. Ther.,40, No. 2, 213–285 (1989).Google Scholar
  10. 10.
    V. I. Yudelevich, E. V. Komarov, and B. I. Ionin, Khim.-farm. Zh., No. 6, 668–685 (1985).Google Scholar
  11. 11.
    Yu. E. Vel'tishchev, É. A. Yur'eva, A. N. Kudrin, et al., Khim.-farm. Zh., No. 3, 282–290 (1983).Google Scholar
  12. 12.
    S. J. Berners-Price and P. J. Sadler, Chem. Britain, No. 6, 541–544 (1987).Google Scholar
  13. 13.
    French Patent 2053018 (1971); Chem. Abstr.,76, No. 113372k (1972).Google Scholar
  14. 14.
    West German Patent 2641526, Chem. Abstr.,88, No. 136717h (1978).Google Scholar
  15. 15.
    J. Garcia-Rafanell, L. Belles, et al., Arzneim.-Forsch. /Drug. Res.,30(II), No. 7, 1091–1098 (1980).Google Scholar
  16. 16.
    European Patent 254663 (1988); Chem. Abstr.,108 No. 150718c.(1988).Google Scholar
  17. 17.
    Belgium Patent 893563 (1982); Chem. Abstr.,98, No. 125636s (1982).Google Scholar
  18. 18.
    West German Patent 2218606 (1973); Chem. Abstr.,78, No. 43475m (1973).Google Scholar
  19. 19.
    West German Patent 2949669 (1980); Chem. Abstr.,94, No. 15410y (1980).Google Scholar
  20. 20.
    Japanese Patent 63275593 (1989); Chem. Abstr.,110, No. (1989).Google Scholar
  21. 21.
    European Patent 210804 (1987); Chem. Abstr.,106, No. 169044k (1987).Google Scholar
  22. 22.
    Japanese Patent 6124530 (1986); Chem. Abstr., 105, No. 172981y (1986).Google Scholar
  23. 23.
    US Patent 4659859 (1987); Ref. Zh. Khim.,4, No. 4009 p (1988).Google Scholar
  24. 24.
    Japanese Patent 6168494 (1986); Chem. Abstr.,105, No. 134194a (1986).Google Scholar
  25. 25.
    US Patent 4710580 (1987); Chem. Abstr.,108, No. 132052q (1988).Google Scholar
  26. 26.
    Japanese Patent 66163617 (1986); Chem. Abstr.,105, No. 66466a (1986).Google Scholar
  27. 27.
    Japanese Patent 6165892 (1986); Chem. Abstr.,105 No. 134147p (1986).Google Scholar
  28. 28.
    J. Fontagne, Z. Sulton, and P. Lechat, Therapie, No. 28, 139–148 (1973).Google Scholar
  29. 29.
    Ch. Arita, N. Kaibara, Hotokebuchi, K. Takagisci, and K. Arai, Clin. Immunol. Immunopatol.,43, No. 3, 354–361 (1987).Google Scholar
  30. 30.
    US Patent 3912769 (1975); Chem. Abstr.,84, No. 30705k (1976).Google Scholar
  31. 31.
    West German Patent 2343608 (1974); Chem. Abstr.,80, No. 145844s (1974).Google Scholar
  32. 32.
    M. T. Garcia-Lopez, M. R. Gonzalez, R. Herranz, et al., Int. J. Pept. Protein Res.,26, No. 2, 174–178 (1985).Google Scholar
  33. 33.
    Japanese Patent 58150508 (1983); Chem. Abstr.,90, No. 200540q (1983).Google Scholar
  34. 34.
    Japanese Patent 8089225 (1980); Chem. Abstr.,94, No. 7755z (1980).Google Scholar
  35. 35.
    West German Patent 2952115 (1981); Chem. Abstr.,95, No. 192388 (1981).Google Scholar
  36. 36.
    Japanese Patent 611728336 (1987); Chem. Abstr.,106 No. 23280n (1987).Google Scholar
  37. 37.
    West German Patent 2914789 (1980); Chem. Abstr.,94, No. 36367e (1980).Google Scholar
  38. 38.
    S. Legch and N. Dereu, Eur. J. Pharmacol.,117, No. 1, 35–42 (1985).Google Scholar
  39. 39.
    US Patent 4014997 (1977); Ref. Zh. Khim., No. 24, 24 0157 P. (1977).Google Scholar
  40. 40.
    US Patent 5901914 (1973); Ref. Zh. Khim., No. 10, No. 100101 P (1976).Google Scholar
  41. 41.
    US Patent 3754019 (1973); Ref. Zh. Khim., No. 15, No. 15 N350 P (1974).Google Scholar
  42. 42.
    V. É. Kolla, O. I. Suslova, and N. G. Khusainova, Izv. Estestvennonauchnogo Inst. Permskom Gosudarstvennom Univ., Vol. XV, No. 2, 26–30 (1974).Google Scholar
  43. 43.
    Japanese Patent 533536 (1978); Chem. Abstr.,89, No. 24537i (1978).Google Scholar
  44. 44.
    Japanese Patent 55108886 (1980); Ref. Zh. Khim., No. 24, 24 0138P (1981).Google Scholar
  45. 45.
    US Patent 4822780 (1989); Chem. Abstr.,111 No. 195076 (1989).Google Scholar
  46. 46.
    Japanese Patent 6111511199 (1986); Chem. Abstr.,106, No. 67489 (1987).Google Scholar
  47. 47.
    Japanese Patent 6087294 (1985); Chem. Abstr.,104, No. 19674k (1985).Google Scholar
  48. 48.
    US Patent 386036 (1975); Ref. Zh. Khim., No. 3, 080P (1976).Google Scholar
  49. 49.
    W. N. Shelver, M. Schreibman, N. S. Tanner, and V. S. Rao, J. Med. Chem.,17, No. 1, 120–124 (1974).Google Scholar
  50. 50.
    European Patent 33919 (1981); Chem. Abstr.,96, No. 52498v (1982).Google Scholar
  51. 51.
    West German Patent 3245887 (1984); Ref. Zh. Khim., No. 6, No. 6 020P (1985).Google Scholar
  52. 52.
    West German Patent 2032712 (1978); Ref. Zh. Khim., No. 20, No. 20 04P (1979).Google Scholar
  53. 53.
    US Patent 4515722 (1982); Chem. Abstr.,103, No. 123861j (1985).Google Scholar
  54. 54.
    European Patent 181833 (1986); Chem. Abstr., 106, No. 18814k (1987).Google Scholar
  55. 55.
    USSR Inventor's Certificate 5184499; Ref. Zh. Khim.,No. 11, No. 11 099P (1974).Google Scholar
  56. 56.
    M. I. Kabachnik, T. Ya. Medved', N. M. Dyatlova, et al., Usp. Khim.,43, 1554–1574 (1974).Google Scholar
  57. 57.
    I. M. Dyatlova, V. Ya. Temkina, and K. P. Popov, Complexones and Complexonates of Metals [in Russian], Khimiya, Moscow (1988).Google Scholar
  58. 58.
    K. B. Yatsimirskii (ed.), Biological Aspects of Coordination Chemistry [in Russian], Naukova Dumka, Kiev (1979), pp. 224–259.Google Scholar
  59. 59.
    West German Patent 3243917 (1984); Ref. Zh. Khim., No. 7, No. 7 075P (1985).Google Scholar
  60. 60.
    West German Patent 3203309 (1983); Chem. Abstr., 99, No. 135220w (1983).Google Scholar
  61. 61.
    European Patent 84822 (1983); Chem. Abstr.,100, No. 6842f (1984).Google Scholar
  62. 62.
    West German Patent 3203307 (1983); Chem. Abstr.,99, No. 212705c (1983).Google Scholar
  63. 63.
    European Patent 185589 (1986): Chem. Abstr.,105, No. 134155z (1986).Google Scholar
  64. 64.
    PCT Int. Appl. 8600902 (1986); Chem. Abstr.,105, No. 153318w (1986).Google Scholar
  65. 65.
    French Patent 2531088 (1984); Ref. Zh. Khim., No. 2, No. 2 020P (1985).Google Scholar
  66. 66.
    European Patent 100718 (1980); Chem. Abstr.,100, No. 192078j (1984).Google Scholar
  67. 67.
    Japanese Patent 6366190 (1988); Ref. Zh. Khim., No. 17, No. 17 093P (1989).Google Scholar
  68. 68.
    European Patent 151072 (1985); Chem. Abstr.,103, No. 215560p (1985).Google Scholar
  69. 69.
    Israel Patent 67762 (1987); Chem. Abstr.,109, No. 93323q (1988).Google Scholar
  70. 70.
    PCT Int. Appl. 8703598 (1987); Chem Abstr.,107, No. 198657p (1987).Google Scholar
  71. 71.
    Japanese Patent 63185993 (1988); Chem. Abstr.,110, No. 24090j (1989).Google Scholar
  72. 72.
    West German Patent 3225469 (1984); Chem. Abstr.,100, No. 210141f (1984).Google Scholar
  73. 73.
    West German Patent 3203308 (1983); Chem. Abstr.,99, No. 176064q (1983).Google Scholar
  74. 74.
    West German Patent 3225468 (1984); Chem. Abstr.,100 (1984).Google Scholar
  75. 75.
    European German Patent 189662 (1986); Chem. Abstr., 106, No. 18815m (1987).Google Scholar
  76. 76.
    US Patent 4275059 (1981); Ref. Zh. Khim., No. 9, No. 9 0259P (1982).Google Scholar
  77. 77.
    Swedish Patent 441493 (1985); Ref. Zh. Khim., No. 13, No. 13 0264P (1986).Google Scholar
  78. 78.
    Swiss Patent 645542 (1984); Ref. Zh. Khim., No. 16, No. 16 0213P (1985).Google Scholar
  79. 79.
    US Patent 4282214 (1981); Ref. Zh. Khim., No. 8, No. 8 0238P (1982).Google Scholar
  80. 80.
    European Patent 88462 (1982); Chem. Abstr.,99, No. 181499g (1983).Google Scholar
  81. 81.
    US Patent 4330530 (1982); Chem. Abstr.,97, No. 61034p (1982).Google Scholar
  82. 82.
    D. J. Collins, S.-A. Mollard, and J. M. Swan, Austr. J. Chem.,27, 2365–2372 (1974).Google Scholar
  83. 83.
    A. Soeder and K. Perrej, Polish J. Chemistry,54, No. 6, 1305–11 (1980).Google Scholar
  84. 84.
    US Patent 4160828 (1979); Ref. Zh. Khim., No. 4, No. 4 095P (1980).Google Scholar
  85. 85.
    US Patent 4091095 (1978); Chem. Abstr.,90, No. 38689c (1979).Google Scholar
  86. 86.
    West German Patent 2505415 (1976); Chem. Abstr.,85, No. 192887v (1976).Google Scholar
  87. 87.
    French Patent 2355504 (1978); Ref. Zh. Khim., No. 9, No. 90 195P (1979).Google Scholar
  88. 88.
    Neth. Patent 7605380 (1977); Chem. Abstr.,89, No. 43780j (1978).Google Scholar
  89. 89.
    Japanese Patent 151150 (1977); Chem. Abstr.,89, No. 215547q (1978).Google Scholar
  90. 90.
    B. K. Beznosko, V. M. Usanova, et al., Khim.-Farm. Zh., No. 4, 22–23 (1990).Google Scholar
  91. 91.
    D. J. Collins, L. E. Rowlej, and J. M. Swan, Austr. J. Chem.,27, 825–830 (1974).Google Scholar
  92. 92.
    D. J. Collins, L. E. Rowlej, and J. M. Swan, Austr. J. Chem.,27, 831–839 (1974).Google Scholar
  93. 93.
    US Patent 3931196 (1976); Chem. Abstr.,85, No. 21609a (1976).Google Scholar
  94. 94.
    West German Patent 2621537 (1976); Chem. Abstr.,86, No. 72878r (1977).Google Scholar
  95. 95.
    British Patent 1498774 (1978); Ref. Zh. Khim., No. 15, No. 15 0138P (1978).Google Scholar
  96. 96.
    Japanese Patent 5821689 (1983); Chem. Abstr.,98, No. 198448s (1983).Google Scholar
  97. 97.
    US Patent 4297487 (1982); Chem. Abstr.,96, No. 20264z (1982).Google Scholar
  98. 98.
    US Patent 4355182 (1983); Ref. Zh. Khim., No. 15, No. 15 031P (1983).Google Scholar
  99. 99.
    US Patent 4075407 (1978); Ref. Zh. Khim., No. 18, No. 18 078P (1978).Google Scholar
  100. 100.
    US Patent 4336252 (1982); Ref. Zh. Khim., No. 4, No. 4 044P (1983).Google Scholar
  101. 101.
    US Patent 4396777 (1983); Ref. Zh. Khim., No. 5, No. 5 035P (1984).Google Scholar
  102. 102.
    B. M. Sutton, J. Med. Chem.,15, No. 11, 1095–1098 (1972).Google Scholar
  103. 103.
    S. T. Crooke, R. M. Snyder, T. R. Butt et al., Biochem. Pharmacol.,35, No. 20, 3423–3431 (1986).Google Scholar
  104. 104.
    US Patent 3947565 (1976); Chem. Abstr.,85, No. 5642a (1976).Google Scholar
  105. 105.
    S. J. Berners-Price, M. I. DiMartini, D. T. Hill, R. Kiroda, and P. I. Sadler, Inorg. Chem.,24, No. 21, 3425–3434 (1985).Google Scholar
  106. 1.a
    V. I. Nifontov. N. P. Bel'skaya, G. P. Andronnikova, and L. V. Krupnova, Khim.-Farm. Zh., No. 10, 29–31 (1990).Google Scholar
  107. 2.a
    V. I. Nifontov, N. P. Bel'skaya, V. A. Chernov, et al., Khim.-Farm. Zh., No. 8, 901–905 (1988).Google Scholar
  108. 3.a
    V. I. Nifontov, N. P. Bel'skaya, O. A. Belyakova, et al., Khim.-Farm. Zh., No. 1, 63–65 (1990).Google Scholar
  109. 4.a
    V. I. Nifontov, N. P. Bel'skaya, O. A. Bagaeva, et al., Khim.-Farm. Zh., No. 4, 53–54 (1990).Google Scholar
  110. 5.a
    V. I. Nifontov, N. P. Bel'skaya, V. A. Chernov, et al., Khim.-Farm. Zh., No. 7, 773–776 (1988).Google Scholar
  111. 6.a
    V. I. Nifontov, N. P. Bel'skaya, O. A. Bagaeva, et al., Khim.-Farm. Zh., No. 7, 56–57 (1990).Google Scholar
  112. 7.a
    V. I. Nifontov, N. P. Bel'skaya, L. V. Krupnova, et al., Khim.-Farm. Zh., No. 8, 53–55 (1990).Google Scholar
  113. 8.a
    I. L. Bagal and B. A. Porai-Koshits, Reactivity of Organic Compounds [in Russian], Vol. 3, No. 1 (1966), pp. 89–99.Google Scholar
  114. 9.a
    L. P. Ivanitskaya, Voprosy Onkologii, No. 10, 40–45 (1973).Google Scholar
  115. 10.a
    A. S. Spirin, Biokhimiya, 656 (1958).Google Scholar
  116. 11.b
    S. A. Skvortsov, Ch. N. Barnakov, and I. L. Bagal, Khim.-Farm. Zh., No. 1, 133–141.Google Scholar
  117. 12.a
    P. Farina, A. Gescher, I. A. Hickman, et al., Biochem. Pharmacol., No. 10, 1887–1892 (1983).Google Scholar
  118. 13.a
    V. I. Nifontov, L. V. Tat'yanenko, N. P. Bel'skaya, et al., Khim.-Farm Zh., No. 5, 522–525 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. Kh. Syundyukova
    • 1
  • E. G. Neganova
    • 1
  • B. K. Beznosko
    • 1
  • E. N. Tsvetkov
    • 1
  1. 1.Institute of Physiologically Active SubstancesRussian Academy of SciencesChernogolovka, Moscow Oblast

Personalised recommendations