Soviet Powder Metallurgy and Metal Ceramics

, Volume 4, Issue 2, pp 122–128 | Cite as

The thermodynamic stability of monocarbides of transition metals from sub groups IV – VI

  • R. G. Avatbé
Testing Methods and Properties of Materials


  1. 1.

    Chemical bond strength for carbides of transition metals from groups IV–VI increases within each group with increasing atomic number of the transition metal and decreases on transition within the period from a carbide of a group IV metal to a carbide of a group VI metal.

  2. 2.

    A weakening of the M-C chemical bond is accompanied by a lowering of the congruent melting temperature for carbides of metals from group IV and a displacement of this temperature into the region of nonstoichiometric compositions for carbides of metals from group V, the least stable carbide-vanadium carbide-melting with decomposition by a peritectic reaction.

  3. 3.

    Carbides of transition metals from group IV, as well as tantalum carbide at moderate temperatures, may be regarded as constant-composition compounds, and variable—composition carbide phases based on these carbides-as subtraction solid solutions. A jump of the partial molar characteristics of these stoichiometric carbides gives rise to their congruent vaporization in a wide temperature range.

  4. 4.

    Vanadium and niobium monocarbides, as well as tantalum carbide at high temperatures, preferentially lose carbon during vaporization, melt at compositions which are different from stoichiometric, exhibit a continuous change of partial molar characteristics with changing composition, and consequently, may be regarded as variable composition compounds.



Carbide Vanadium Niobium Carbide Phase Peritectic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. V. Samsonov and Ya. S. Umanskii, Hard Compounds of Refractory Metals [in Russian], Moscow, Metallurgizdat (1957).Google Scholar
  2. 2.
    G. V. Samsonov and K. I. Portnoi, Alloys Based on Refractory Compounds [in Russian], Moscow, Oborongiz (1961).Google Scholar
  3. 3.
    R. Kieffer and P. Schwarzkopf, Hard Alloys [Russian translation], Moscow, Metallurgizdat (1957).Google Scholar
  4. 4.
    I. E. Campbell (editor), High Temperature Techniques [Russian translation], Moscow,49 (1959).Google Scholar
  5. 5.
    High Temperature Investigations [Russian translation] Moscow, 49 (1962).Google Scholar
  6. 6.
    B. F. Ormont, Zh. Neorgan. Khim.,1, 1457 (1956).Google Scholar
  7. 7.
    I. P. Morozova, M. K. Khripun, and S. M. Ariya, Zh. Obshch. Khim.,32, 7, 2072 (1962).Google Scholar
  8. 8.
    M. Hansen and K. Anderko, Structures of Binary Alloys [Russian translation], Moscow,1 (1962).Google Scholar
  9. 9.
    F. Benesovskii and E. Rudy, Planseeber. für Pulvermetallurgie, 8, 66 (1960).Google Scholar
  10. 10.
    R. G. Avarbé, A. I. Avgustinnik, Yu. N. Vil'k, Yu. D. Kondrashev, S. S. Nikol'skii, Yu. A. Omelchenko, and U. S. Ordan'yan, Zh. Prikl. Khim.,35, 1976 (1962).Google Scholar
  11. 11.
    E. K. Storms and R. Y. McNeal, J. Phys. Chem.,66, 1401 (1962).Google Scholar
  12. 12.
    E. K. Storms and N. H. Krikorian, J. Phys. Chem.,64, 1471 (1960).Google Scholar
  13. 13.
    P. Elliot, Trans. Amer. Soc. Metals,53, N 1, 13 (1961).Google Scholar
  14. 14.
    A. L. Bowman, J. Phys. Chem.,65, 1596 (1961).Google Scholar
  15. 15.
    B. F. Ormont, Zh. Fiz. Khim.,33, 7, 1455 (1959).Google Scholar
  16. 16.
    S. Fujishiro, J. Japan. Soc. Powder Metallurgy,8, N 2, 73 (1961).Google Scholar
  17. 17.
    Fowler and E. A. Guggenheim, Statistical Thermodynamics [Russian translation].Google Scholar
  18. 18.
    V. I. Smirnova and B. F. Ormont, Zh. Fiz. Khim.,30, 6, 1327 (1956).Google Scholar
  19. 19.
    F. G. Kusenko and P. V. Gel'd, Izv. Sibirsk. Otd. Akad. Nauk SSSR.2, 46 (1960).Google Scholar
  20. 20.
    E. J. Huber, E. L. Head, C. E. Holley, and E. K. Storms, J. Phys. Chem.,65, N 10, 1846 (1961).Google Scholar
  21. 21.
    B. D. Pollock, J. Phys. Chem.,65, N 5, 731 (1961).Google Scholar
  22. 22.
    G. V. Samsonov, Izv. Sektora Fiz.-Khim. Analiza Akad. Nauk SSSR,27, 97 (1956).Google Scholar
  23. 23.
    A. V. Storonkin, Zh. Fiz. Khim.,30, 1, 206 (1956).Google Scholar
  24. 24.
    A. V. Storonkin, Zh. Fiz. Khim.,32, 4, 937 (1958).Google Scholar
  25. 25.
    M. Hoch, P. E. Blackburn, D. P. Dingledy, and H. L. Johnston, J. Phys. Chem.,59, N 2, 97 (1955).Google Scholar
  26. 26.
    W. A. Chupka, J. Berkovitz, C. A. Giese, and M. G. Inghram, J. Phys. Chem.,62, N 5, 611 (1958).Google Scholar
  27. 27.
    C. P. Kempter and M. R. Nadler, J. Chem. Phys.,32, N 5, 1477 (1960).Google Scholar
  28. 28.
    R. J. Fries, J. Chem. Phys.,37, 320 (1962).Google Scholar
  29. 29.
    G. V. Samsonov, A. S. Bolgar, and T. S. Verkhoglyadova, Izv. Akad. Nauk SSSR, Met. i Toplivo,1, 142 (1961).Google Scholar
  30. 30.
    R. R. Avarbé and S. S. Nikol'skii, Teplofiz. Vysokikh Temperatur,1, 1, 39 (1963).Google Scholar
  31. 31.
    A. N. Nesmeyanov, Vapor Pressure of Chemical Elements [in Russian], Moscow, Acad. Sci. USSR Press, 215 (1961).Google Scholar

Copyright information

© Consultants Bureau Enterprises, Inc. 1965

Authors and Affiliations

  • R. G. Avatbé
    • 1
  1. 1.Order of the Red Banner of Labor State Institute of Applied ChemistryLeningrad

Personalised recommendations