Advertisement

Molecular Biology Reports

, Volume 10, Issue 2, pp 69–74 | Cite as

Nucleosomal organization of a part of chromatin in mollusc sperm nuclei with a mixed basic protein composition

  • A. O. Zalensky
  • Z. V. Avramova
Article

Abstract

The structural organization of mature sperm chromatin from three representatives of theMytilidae family has been studied. The acid-soluble proteins in these species nuclei are primarily sperm-specific (approximately 80%) with the remainder being core histones. Previously, we have shown that the mature sperm nuclei of these molluscs are compact, dense structures formed by interaction of the spermspecific proteins with DNA (1). Here we show that: a) although the histones are minor chromatin protein fraction, they still organize a part (20–25%) of the total DNA into nucleosomes; b) one of the sperm-specific proteins, different from somatic H1 or H5 histones participates in the formation of the beaded structures.

Keywords

Structural Organization Protein Fraction Basic Protein Dense Structure Protein Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AvramovaZ., ZalenskyA. & TsanevR., 1984. Exp. Cell Res. 152: 231–239.Google Scholar
  2. 2.
    AusioT. & SubiranaJ. A., 1982. Exp. Cell Res. 141: 39–45.Google Scholar
  3. 3.
    ZalenskyA. O. & ZalenskayaI. A., 1980. Comp. Biochem. Physiol. 66B: 415–419.Google Scholar
  4. 4.
    ZalenskayaI. A., PospelovV. A., ZalenskyA. O. & Vorob'evV. Y., 1981. Nucl. Acid Res. 9: 473–487.Google Scholar
  5. 5.
    PanymS. & ChalkleyR., 1969. Arch. Biochem. Biophys. 130: 337–346.Google Scholar
  6. 6.
    LaemmliU. K., 1970. Nature 227: 680–685.Google Scholar
  7. 7.
    PhelanJ., ColonJ., CozcolluelaC., SubiranaJ. A. & ColeR. D., 1974. J. Biol. Chem. 249: 1099–1102.Google Scholar
  8. 8.
    SubiranaJ. A., CozcolluelaC., PhelanJ. & UnzetaM., 1973. Biochem. Biophys. Acta 317: 364–370.Google Scholar
  9. 9.
    ZentgrafH., MullerU. & FrankeW. W., 1980. Eur. J. Cell Biol. 20: 254–264.Google Scholar
  10. 10.
    HondaB. H., BaillieD. L. & CandidoE. P. M., 1974. FEBS Lett. 48: 156–159.Google Scholar
  11. 11.
    SubiranaJ. A., Munoz-GuerraS., MartinezA. B., Perez-GrauL., MarcetaX. & FitaJ., 1981. Chromosoma 83: 455–471.Google Scholar
  12. 12.
    ZalenskayaI. A., ZalenskayaE. O. & Vorob'evV. Y., 1982. Studies Biophys. 87: 159–160.Google Scholar
  13. 13.
    FrankeW. W., ScheerU., TrendelenburgM. & ZentgrafH., 1978. Cold Spring Harbor Symp. Quant. Biol. 42: 755–772.Google Scholar
  14. 14.
    KiryanovG. J., ManamashyanT. A., PolyakovV. Yu., FaisD. & ChentsovYu. S., 1976. FEBS Lett. 67: 323–327.Google Scholar
  15. 15.
    RenzM., NehlsP. & HozierJ., 1978. Cold Spring Harbor Symp. Quant. Biol. 42: 245–252.Google Scholar

Copyright information

© Dr W. Junk Publishers 1984

Authors and Affiliations

  • A. O. Zalensky
    • 1
  • Z. V. Avramova
    • 2
  1. 1.Institute of CytologyUSSR Acad. Sci.LeningradUSSR
  2. 2.Institute of Molecular BiologyBulg. Acad. Sci.SofiaBulgaria

Personalised recommendations