Annals of Global Analysis and Geometry

, Volume 9, Issue 2, pp 117–128 | Cite as

Surfaces in Lorentzian hyperbolic space

  • Bennett Palmer


Group Theory Hyperbolic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [EF]
    Eichenherr, J.;Forger, M.: On the dual symmetry of the non-linear sigma models. Nuclear Physics B155 (1979), 381–393.Google Scholar
  2. [G]
    Gage, M.: Upper bounds for the first Dirichlet eigenvalue of the Laplace-Beltrami Operator, Indiana U. Math. J.,29, no. 6 (1980), 897–912.Google Scholar
  3. [HO]
    Hoffman, D. H.;Osserman, R.: The Gauss map of surface inR 3 andR 4. Proc. London Math. Soc. (3)50 (1985), 29–56.Google Scholar
  4. [HOS]
    Hoffman, D. H.;Osserman, R.;Schoen, R.: On the Gauss map of complete surfaces of constant mean curvature inR 3 andR 4. Comment. Math. Helv.57 (1982), 519–531.Google Scholar
  5. [P]
    Palmer, B.: Spacelike constant mean curvature surfaces in pseudo-Riemannian space forms. Ann. Global Anal. Geom.8 (1990), 217–226.Google Scholar
  6. [Po]
    Pohlmeyer, K.: Integrated Hamiltonian systems and interactions through quadratic constraints. Comm. Meth. Phys.46 (1976), 207–221.Google Scholar
  7. 7.
    [W]Wolf, J. A.: Spaces of Constant Curvature. Publish or Perish Inc., Boston, Ma., 1972.Google Scholar

Copyright information

© Deutscher Verlag der Wissenschaften GmbH 1991

Authors and Affiliations

  • Bennett Palmer
    • 1
  1. 1.Fachbereich 3 - MathematikTechnische Universität BerlinBerlin 12Bundesrepublik Deutschland

Personalised recommendations