Annals of Global Analysis and Geometry

, Volume 9, Issue 2, pp 117–128 | Cite as

Surfaces in Lorentzian hyperbolic space

  • Bennett Palmer


Group Theory Hyperbolic Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [EF]
    Eichenherr, J.;Forger, M.: On the dual symmetry of the non-linear sigma models. Nuclear Physics B155 (1979), 381–393.Google Scholar
  2. [G]
    Gage, M.: Upper bounds for the first Dirichlet eigenvalue of the Laplace-Beltrami Operator, Indiana U. Math. J.,29, no. 6 (1980), 897–912.Google Scholar
  3. [HO]
    Hoffman, D. H.;Osserman, R.: The Gauss map of surface inR 3 andR 4. Proc. London Math. Soc. (3)50 (1985), 29–56.Google Scholar
  4. [HOS]
    Hoffman, D. H.;Osserman, R.;Schoen, R.: On the Gauss map of complete surfaces of constant mean curvature inR 3 andR 4. Comment. Math. Helv.57 (1982), 519–531.Google Scholar
  5. [P]
    Palmer, B.: Spacelike constant mean curvature surfaces in pseudo-Riemannian space forms. Ann. Global Anal. Geom.8 (1990), 217–226.Google Scholar
  6. [Po]
    Pohlmeyer, K.: Integrated Hamiltonian systems and interactions through quadratic constraints. Comm. Meth. Phys.46 (1976), 207–221.Google Scholar
  7. 7.
    [W]Wolf, J. A.: Spaces of Constant Curvature. Publish or Perish Inc., Boston, Ma., 1972.Google Scholar

Copyright information

© Deutscher Verlag der Wissenschaften GmbH 1991

Authors and Affiliations

  • Bennett Palmer
    • 1
  1. 1.Fachbereich 3 - MathematikTechnische Universität BerlinBerlin 12Bundesrepublik Deutschland

Personalised recommendations