Advertisement

Probability Theory and Related Fields

, Volume 73, Issue 3, pp 447–461 | Cite as

Asymptotically efficient nonparametric estimation of functionals of a spectral density function

  • R. Z. Hasminskii
  • I. A. Ibragimov
Article

Keywords

Density Function Stochastic Process Probability Theory Spectral Density Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levit, B.Ya: On optimality of some statistical estimates. Proc. Prague Symp. Asympt. StatisticsII, 215–238 (1974)Google Scholar
  2. 2.
    Koševnik, Yu.A., Levit, B.Ya.: On a non-parametric analogue of the information matrix. Theory Probab. Appl.XXI, 759–774 (in Russian). (Engl. transl. pp. 738–753) (1976)Google Scholar
  3. 3.
    Hasminskii, R.Z., Ibragimov, I.A.: On the nonparametric estimation of functionals. Proc. 2nd Prague Symp. Asympt. Statistics, 41–52 (1978)Google Scholar
  4. 4.
    Hasminskii, R.Z., Ibragimov, I.A.: Some estimation problems for stochastic differential equations. Lecture Notes in Control and Inform. Sci.25, 1–12 (1980)Google Scholar
  5. 5.
    Ibragimov, I.A., Hasminskii, R.Z.: Statistical estimation. Berlin-Heidelberg-New York: Springer 1981Google Scholar
  6. 6.
    Davies, R.B.: Asymptotic inference in stationary Gaussian time-series. Adv. Appl. Probab.5, 469–497 (1973)Google Scholar
  7. 7.
    Levit, B.Ya., Samarov, A.M.: A remark on the estimation of a spectral function. Problemy Peredači Informacii14, 61–66 (in Russian). (Engl. transl., Probl. Inform. Transmission14, 120–123) (1978)Google Scholar
  8. 8.
    Nikolskii, S.M.: Approximation of functions of several variables and imbedding theorems. Moscow, Nauka, 1969 (in Russian). (Engl. transl. Berlin-Heidelberg-New York: Springer 1975)Google Scholar
  9. 9.
    Ibraginov, I.A.: On estimation of the spectral function of a stationary Gaussian process. Theory Probab. Appl.,VIII, 391–430 (in Russian). (Engl. transl. pp. 366–401) (1963)Google Scholar
  10. 10.
    Zygmund, A.: Trigonometric Series Vols. I, II, Cambridge: Cambirdge Univ. Press. 1968Google Scholar
  11. 11.
    Bentkus, R.J., Rudzkis, R.A.: On the distribution of some statistical estimates of spectral density. Theory Probab. Appl.XXVII, 739–756 (in Russian) (Engl. transl. pp. 795–814) (1982)Google Scholar
  12. 12.
    Ibragimov, I.A., Rozanov, Yu.A.: Gaussian random processes. Berlin-Heidelberg-New York: Springer 1978Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • R. Z. Hasminskii
    • 1
  • I. A. Ibragimov
    • 2
  1. 1.Institute for Problems of Information TransmissionAcademy of SciencesMoscowUSSR
  2. 2.Mathematics InstituteAcademy of SciencesLeningradUSSR

Personalised recommendations