Strength of Materials

, Volume 14, Issue 3, pp 411–414 | Cite as

Calculation of stretching diagrams for capron strip

  • A. G. Giniyatullin
  • A. M. Stalevich
Scientific-Technical Section


  1. 1.

    It is shown to be reliable to use the nonlinear theory of viscoelasticity to calculate the tensile load on a capron strip, which involves using a relaxation kernel in the form of a logarithmically normal distribution in terms of a compound strain-time argument.

  2. 2.

    It is shown to be possible to calculate the stretching diagrams for capron strips with given stretching rates.



Normal Distribution Capron Tensile Load Nonlinear Theory Relaxation Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. M. Stalevich and V. G. Tiranov, “The general creep laws for synthetic filaments made of flexible-chain and rigid-chain polymers,” Preprint for the Second International Symposium on Chemical Fibers, Kalinin (1977), pp. 165–171.Google Scholar
  2. 2.
    A. M. Stalevich, “The relations between the parameters of short-term and long-term creep in highly oriented chemical fibers,” Izv. Vyssh. Uchebn. Zaved. Tekhno. Tekst. Promst., No. 4, 26–30 (1978).Google Scholar
  3. 3.
    A. M. Stalevich, “Deformation of textile materials with complex laws of static loading,” Izv. Vyssh. Uchebn. Zaved. Tekhno. Legk., Promst., No. 1, 25–31 (1979).Google Scholar
  4. 4.
    Yu. S. Urzhumtsev and R. D. Maksimov, Forecasting the Deformability of Polymer Materials [in Russian], Zinatne, Riga (1975).Google Scholar
  5. 5.
    A. M. Stalevich, V. G. Tiranov, G. Ya. Slutsker, and V. A. Romanov, “Forecasting isothermal creep of synthetic filaments for engineering purposes,” Khim. Volokna, No. 4, 52–56 (1978).Google Scholar
  6. 6.
    E. Jahnke, F. Emde, and F. Lösch, Special Functions [Russian translation], Nauka, Moscow (1968).Google Scholar
  7. 7.
    U. Lederman, “Elastic and creep properties of filamentous materials,” in: Textile Foundation, Washington (1943).Google Scholar
  8. 8.
    M. I. Rozovskii, “Creep and long-term failure in materials,” Zh. Tekh. Fiz.,21, No. 11, 1311–1318 (1951).Google Scholar
  9. 9.
    A. P. Aleksandrov, “Freezing resistance in macromolecular compounds,” in: Proceedings of the First and Second Conferences on Macromolecular Compounds [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1945), pp. 49–59.Google Scholar
  10. 10.
    G. I. Gurevich, “Deformation laws of solid and liquid bodies,” Zh. Tekh. Fiz.,17, No. 12, 1491–1502 (1947).Google Scholar
  11. 11.
    Yu. N. Rabotnov, Creep Problems in Structural Elements, Elsevier (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • A. G. Giniyatullin
    • 1
    • 2
  • A. M. Stalevich
    • 1
    • 2
  1. 1.Feodosiya
  2. 2.Leningrad

Personalised recommendations