Advertisement

Environmental Geology

, Volume 26, Issue 1, pp 32–38 | Cite as

Radon emanation from giant landslides of Koefels (Tyrol, Austria) and Langtang Himal (Nepal)

  • F. Purtscheller
  • T. Pirchl
  • G. Sieder
  • V. Stingl
  • T. Tessadri
  • P. Brunner
  • O. Ennemoser
  • P. Schneider
Article

Abstract

The identification of extremely high indoor radon concentrations in the village Umhausen (Tyrol, Austria) initiated a scientific program to get information about the source and distribution of this noble gas. The high concentrations can not be related to U anomalies or large-scale fault zones. The nearby giant landslide of Koefels, with its highly fractured and crushed orthogneisses, are the only possible source of radon, despite the fact that the U and Ra content of the rocks is by no means exceptional. The reasons for the high emanation rates from the landslide are discussed and compared to results gained from a similar examination of the giant landslide of Langtang Himal (Nepal). The exceptional geologic situation in both cases, as well as the spatial distribution of different concentration levels, indicate that both landslides must be considered as the production sites of radon. Independent of the U and Ra contents of the rocks, the most important factors producing high emanation rates are the production of a high active surface area and circulation pathways for Rn-enriched soil air by brittle deformation due to the impact of the landslidemass.

Key words

Radon Geochemistry Landslides Brittle deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abele G (1974) Bergstürze in den Alpen, ihre Verbreitung, Morphologie und Folgeerscheinung. Wiss Alpenvereinsh 25:230 ppGoogle Scholar
  2. Carmichael RS (1990)Physical properties of rocks and minerals. Boca Raton, FL CRC PressGoogle Scholar
  3. Ennemoser O, Ambach W, Brunner P, Schneider P, Oberaigner W, Purtscheller F, and Stingl V (1993a) Unusually high indoor radon concentrations. Atmos Environ 27A:2169–2172Google Scholar
  4. Ennemoser O, Ambach W, Brunner P, Schneider P, Oberaigner W, Purtscheller F, Stingl V, and Keller G (1993b) Unusually high indoor radon concentrations from a giant rock slide. Sci Total Environ (in press)Google Scholar
  5. Erismann TH, Heuberger H, and Preuss E (1977) Der Bimsstein von Köfels (Tirol), ein Bergsturz-“Friktionit.” Tschermaks Mineral Petrogr Mitt 24:67–119Google Scholar
  6. Flexser S, Wollenberg HA, and Smith AR (1993) Distribution of radon sources and effects on radon emanation in granitic soil at Ben Lomond, California. Environ Geol 22:162–177Google Scholar
  7. Gundersen LCS (1991) Radon in sheared metamorphic and igneous rocks. US Geol Surv Bull 1971:39–50Google Scholar
  8. Gundersen LCS, Schumann RR, Otton JK, Dubiel RF, Owen DE, and Dickinson KA (1992) Geology of radon in the United States. In: Gates AE and Gundersen LCS (Eds),Geologic controls on radon. Geological Society of America Special Paper 271Google Scholar
  9. Hammer W (1924) Uber das Vorkommen jungvulkanischer Gesteine im Ötztal (Tirol) und ihr Alter. Sitzungsber Akad Wiss Wien Math Naturwiss Kl Abt I 132:329–342Google Scholar
  10. Heuberger H and Brückl E (1993) Reflexionsseismische Messungen am Bergsturz von Köfels. Arb Geol B-A 156–158Google Scholar
  11. Heuberger H, Masch L, Preuss E, and Schröcker A (1984) Quaternary landslides and rock fusion in Central Nepal and the Tyrolean Alps. Mt Res Dev 4:345–362Google Scholar
  12. Israel H and Björnsson S (1967) Radon (Rn-222) and thoron (Rn-220) in soil air over faults. Zt Geophys 33:48–64Google Scholar
  13. Krüse K (1940) Beiträge zur Kenntnis der Radioaktivität der Mineralquellen Tirols. Mitt Reichsamts Bodenforsch 1:70–80Google Scholar
  14. Kurat G and Richter W (1972) Impaktite von Köfels. Tschermaks Mineral Petrogr Mitt 17:23–45Google Scholar
  15. Lahodinsky R, Lyons JB, and Officer CB (1993) Phänomen Köfels—eine nur mühsam akzeptierte Massenbewegung. Arb Geol B-A 159–162Google Scholar
  16. Leroux H and Doukhan JC (1993) Dynamic deformation of quartz in the landslide of Köfels, Austria. Eur J Mineral 5:893–902Google Scholar
  17. Lyons JB, Officer CB, Borella PE, and Lahodinsky R (1993) Planar lamellar substructures in quartz. Earth Planet Sci Lett 119:431–440Google Scholar
  18. Masch L, Erismann T, Heuberger H, Preuss E, and Schröcker A (1981) Frictional fusion on the gliding planes of two large landslides. 26th International Geological Congress, Paris, 1980, Section 17. pp 11–14Google Scholar
  19. Pichler A (1863) Zur Geognosie Tirols. II. Die vulkanischen Reste von Köfels. Jahrb KK Geol R-A 13:591–594Google Scholar
  20. Pirchl T, Sieder G, Brunner P, Purtscheller F, Stingl V, and Tessadri R (1994) Geochemische, mineralogische und geologische Aspekte zur Radon-Anomalie in Umhausen/Ötztal. Mitt Oesterr Miner Ges (in press)Google Scholar
  21. Preuss E (1974) Der Bimsstein von Köfels im Ötztal/Tirol, die Reibungsschmelze eines Bergsturzes. Jahrb Ver Schütze Alpenpflanzen Tiere 39:85–95Google Scholar
  22. Purtscheller F, Stingl V, Brunner P, and Ennemoser O (1994) The Tsergo Ri landslide (Langtang Himal)—a case study of radon emanation from giant landslides. J Nepal Geol Soc 10:102–104Google Scholar
  23. Reddy SM, Searle MP, and Massey JA (1992) Structural evolution of the High Himalayan Gneiss sequence, Langtang Valley, Nepal. In: Treloar PJ and Searle MP (Eds),Himalayan Tectonics. Geological Society Special Publication 74:375–389Google Scholar
  24. Scott JS and Drever HI (1953) Frictional fusion along a Himalayan thrust. Proc R Soc Edinburgh Sect B 65 (part 2): 121–142Google Scholar
  25. Semkov TM (1990) Recoil-emanation theory applied to radon release from mineral grains. Geochim Cosmochim Acta 54:425–440Google Scholar
  26. Steele SR, Hood WC, and Sexton JL (1982) Radon emanation in the New Madrid seismic zone. Geol Surv Prof Paper 1236:191–201Google Scholar
  27. Stingl V, Purtscheller F, Brunner P, and Ennemoser O (1993) Bergstürze, Schwemmfächer und Radonverteilung im äußeren Ötztal (Tirol, Österreich). Geol Palaeontol 27:299–300Google Scholar
  28. Storzer D, Hörn P, and Kleinmann B (1971) The age and the origin of Köfels structure, Austria. Earth Planet Sci Lett 12:238–244Google Scholar
  29. Stutzer O (1937) Die Talweitung von Köfels im Ötztal/Tirol als Meteorkrater. Z Dtsch Geol Ges 88:523–525Google Scholar
  30. Suess FE (1937) Der Meteorkrater von Köfels bei Umhausen im Ötztale, Tirol. N Jahrb Mineral Geol Palaeont Abh 72, Beil-Bd Abt A 98-155Google Scholar
  31. Surbeck H (1992) Das nationale Schweizer Radonprogramm. In: Tagungsber 14th Jahrestagg. Vienna: ÖSRAD. pp 6–14Google Scholar
  32. Surenian R (1988) Scanning electron microscope study of shock features in pumice and gneiss from Köfels (Tyrol, Austria). GPM Innsbruck 15:135–143Google Scholar
  33. Surenian R (1993) Das Köfels-Ereignis im Ötztal (Tirol), Überblick über die Geomorphologie und Forschungsgeschichte. Arb Geol B-A 151–155Google Scholar
  34. Sutherland DS (1994) Radon workshop—geology, environment, techniques. Geoscientist 4(2): 27–29Google Scholar
  35. Wilkening M (1990)Radon in the environment. Stud Environ Sci 40:137 ppGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • F. Purtscheller
    • 1
  • T. Pirchl
    • 1
  • G. Sieder
    • 1
  • V. Stingl
    • 2
  • T. Tessadri
    • 1
  • P. Brunner
    • 3
  • O. Ennemoser
    • 4
  • P. Schneider
    • 3
  1. 1.Institut für Mineralogie & PetrographieUniversität InnsbruckInnsbruckAustria
  2. 2.Institut für Geologie & PaläontologieUniversität InnsbruckInnsbruckAustria
  3. 3.Institut für Analytische Chemie & RadiochemieUniversität InnsbruckInnsbruckAustria
  4. 4.Institut für Medizinische PhysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations