Skip to main content
Log in

Conformational transitions in closed circular DNA molecules II. Biological implications

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A model of regulation of gene action based on the theory of conformational transitions in closed circular DNA molecules is proposed and discussed in connection with the mechanisms of cellular differentiation. The model predicts two main types of regulation of gene action (1) the change in the topological linking number of the DNA loops leading to the change in the amount of the DNA segments present in the transcriptionally active A-form and (2) the change of some nucleotide sequences in closed superhelical DNA loops resulting in conformational transitions of some of the other sequences in the same loop. The first type of regulation may explain the mechanism of terminal differentiation of the stem cells and the changes accompanying the malignant transformation. The second one may explain the variegated position effect of the gene and determination of the stem cells during ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacob, F. and Monod, J., J. Mol. Biol., 3, 318 (1961).

    Google Scholar 

  2. Losick, R., Pero, J. in: R. Losick and M. Chamberlin (eds.), RNA polymerase, Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y., 1976, p. 227.

    Google Scholar 

  3. Roeder, R.G. in: R. Losick and M. Chamberlin (eds.), RNA polymerase, Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y., 1976, p. 285.

    Google Scholar 

  4. Cook, R.P., Biol. Rev., 49, 51 (1974).

    Google Scholar 

  5. Luchnik, A.N., J. Theor. Biol., 77, 229 (1979).

    Google Scholar 

  6. Botchan, P., J. Mol. Biol., 105, 161 (1976).

    Google Scholar 

  7. Colman, A. and Cook, P.R., Eur. J. Biochem., 76, 63 (1977).

    Google Scholar 

  8. Hsieh, T.-S. and Brutlag, D.L., Proc. Nat. Acad. Sci. USA, 76, 726 (1979).

    Google Scholar 

  9. Kazamatsu, H. and Vinograd, J., Ann. Rev. Biochem., 43, 695 (1974).

    Google Scholar 

  10. Worcel, A. and Burgi, E., J. Mol. Biol., 71, 127 (1972).

    Google Scholar 

  11. Matsuda, T., Japanese J. Genet., 52, 153 (1977).

    Google Scholar 

  12. Teplitz, M., Nucl. Acids Res., 4 1505 (1977).

    Google Scholar 

  13. Pinon, R. and Salts, Y., Proc. Nat. Acad. Sci. USA, 74, 2850 (1977).

    Google Scholar 

  14. McCready, S.J., Cox, B.S., and McLaughlin, C.S., Exp. Cell. Res., 108, 473 (1977).

    Google Scholar 

  15. Cook, R.P. and Brazell, I.A., J. Cell Sci., 22, 287 (1976).

    Google Scholar 

  16. Benyajati, C. and Worcel, A. Cell, 9, 393 (1976).

    Google Scholar 

  17. Ide, T., Nakane, M., Anzai, R., and Andoh, T., Nature, 258, 445 (1975).

    Google Scholar 

  18. Paulson, J.R. and Laemmli, U.K., Cell, 12, 817 (1977).

    Google Scholar 

  19. Luchnik, A.N., Mol. Biol. Rep., 6, 3 (1980).

    Google Scholar 

  20. Davies, D.R. and Baldwin, R.L., J. Mol. Biol., 6, 251 (1963).

    Google Scholar 

  21. Simpson, R.T. and Seale, R.L., Biochemistry, 13, 4609 (1974).

    Google Scholar 

  22. Lapeyre, J.N. and Bekhor, I., J. Mol. Biol., 89, 137 (1974).

    Google Scholar 

  23. Rutter, W.J., Pictet, R.L. and Morris, P.W., Ann. Rev. Biochem., 42, 601 (1973).

    Google Scholar 

  24. Lin, S.-Y. and Riggs, A.D., Proc. Nat. Acad. Sci. USA, 69, 2574 (1972).

    Google Scholar 

  25. Lin, S.-Y. and Riggs, A.D., Biochem. Biophys. Acta, 432, 185 (1976).

    Google Scholar 

  26. Lapyere, J. and Bekhor, I., J. Mol. Biol., 104, 25 (1976).

    Google Scholar 

  27. Bick, M.D. and Devine, E.A., Nucl. Acids Res., 4, 3678 (1977).

    Google Scholar 

  28. Lin, S., Lin, D., and Riggs, A., Nucl. Acids Res., 3, 2183 (1976).

    Google Scholar 

  29. Matthes, E., Fenske, H., Eichhorn, I., Langen, P. and Lindigkeit, R., Cell Diff., 6, 241 (1977).

    Google Scholar 

  30. Levin, J.M., Jost, E. and Cook, P.R., J. Cel Sci., 29, 103 (1978).

    Google Scholar 

  31. Hamilton, L.D., Fuller, W. and Reich, E., Nature, 198, 538 (1963).

    Google Scholar 

  32. Terada, M., Epner, E., Nudel, U., Salmon, J., Fibach, E., Rifkind, R.A., and Marks, P.A., Proc. Nat. Acad. Sci. USA, 75, 2795 (1978).

    Google Scholar 

  33. Marks, P.A. and Rifkind, R.A., Ann. Rev. Biochem., 47, 419 (1978).

    Google Scholar 

  34. Javaherian, K., Lin, L.F., and Wang, J.C., Science, 199, 1345 (1978).

    Google Scholar 

  35. Sarma, D.S.R., Rajalakshmi, S. and Farber, E., in F.F. Becker (ed.) Cancer, vol. 1, Plenum, New York, 1975, p. 235–287.

    Google Scholar 

  36. Moreau, P. and Devoret, R. in H. Hiatt, J. Watson, J. Winsten (eds.) Origins of Human Cancer, Cold Spring Harbor, N.Y., 1977, p. 1451–1472.

  37. Radman, M., Villani, G., Boiteux, S., Defais, M., Caillet-Fauquet, P., in H. Hiatt, J. Watson, J. Winsten (eds.), Origins of Human Cancer, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1977, p. 903–922.

    Google Scholar 

  38. Woodcock, C.L.F., Frado, L.-L.Y., Hatch, C.L., and Ricciardiello, L., Chromosoma, 58, 33 (1976).

    Google Scholar 

  39. Foe, V.E., Cold Spring Harbor Symp. Quant. Biol., 42, 723 (1978).

    Google Scholar 

  40. Franke, W.W., Scheer, U., Trendelenburg, M., Zentgraf, H., and Spring, H., Cold Spring Harbor Symp. Quant. Biol., 42, 755 (1978).

    Google Scholar 

  41. Garel, A., and Axel, R., Proc. Nat. Acad. Sci. USA, 73, 3966 (1976).

    Google Scholar 

  42. Weintraub, H., and Groudine, M., Science, 193, 848 (1976).

    Google Scholar 

  43. Johnson, E.M., Alltrey, V.G., Brandburg, E.M. and Matthews, H.R., Proc. Nat. Acad. Sci. USA, 75, 1116 (1978).

    Google Scholar 

  44. Polacow, I. and Simpson, R.T., Biochem. Biophys. Res. Comm., 52, 202 (1973).

    Google Scholar 

  45. Oudet, P., Spadafora, C. and Chambon, P., Cold Spring Harbor Symp. Quant. Biol., 42, 301 (1978).

    Google Scholar 

  46. Rosenberg, B.H., Ungers, G., and Deutsch, J.F., Nucl. Acids Res., 3, 3305 (1976).

    Google Scholar 

  47. Poccia, D.L., LeVine, D., and Wang, J.C., Developm. Biol., 64, 271 (1978).

    Google Scholar 

  48. Bina-Stein, M. and Singer, M.F., Nucl. Acids Res., 4, 117 (1977).

    Google Scholar 

  49. Bram, S. and Tougart, P., Nature New Biol., 239, 128 (1972).

    Google Scholar 

  50. Bram, S., Proc. Nat. Acad. Sci. USA, 70, 2167 (1973).

    Google Scholar 

  51. Pilet, J. and Brahms, J., Nature New Biol., 236, 99 (1972).

    Google Scholar 

  52. Levitt, M., Proc. Nat. Acad. Sci. USA, 75, 640 (1978).

    Google Scholar 

  53. Gupta, G. and Sasisekharan, V., Nucl. Acids Res., 5, 1655 (1978).

    Google Scholar 

  54. Viswamitra, M.A., Kennard, O., Shakked, Z., Jones, P.G., Sheldrick, G.M., Salisbury, S., and Falvello, L., Curr. Sci., 47, 289 (1978).

    Google Scholar 

  55. Ivanov, V.I., Minchenkova, L.E., Minyat, E.E., Frank-Kamenetskii, M.D., and Schyolkina, A.K., J. Mol. Biol., 87, 817 (1974).

    Google Scholar 

  56. Milman, G., Chamberlain, M., and Langridge, R., Proc. Nat. Acad. Sci. USA, 57, 1804 (1967).

    Google Scholar 

  57. Samejima, T., Hashezume, H., Imahori, K., Fujii, I., and Miura, K., J. Mol. Biol., 34, 39 (1968).

    Google Scholar 

  58. Hamilton, L.D., Nature, 218, 633 (1968).

    Google Scholar 

  59. Arnott, S., Fuller, W., Hudgson, A., and Prutton, I., Nature, 220, 561 (1968).

    Google Scholar 

  60. Compton, J.L., Bellard, M., and Chambon, P., Proc. Nat. Acad. Sci. USA, 73, 4382 (1976).

    Google Scholar 

  61. Weintraub, H., Nucl. Acids Res., 5, 1179 (1978).

    Google Scholar 

  62. Newrock, K.M., Alfageme, C.R., Nardi, R.V., and Cohen, K.H., Cold Spring Harbor Symp. Quant. Biol., 42, 421 (1978).

    Google Scholar 

  63. Strom, C.M. and Dorfman, A., Proc. Nat. Acad. Sci. USA, 73, 3428 (1976).

    Google Scholar 

  64. Viola-Magni, M.P., Rossi, R., Biondi, R., and Benedetti, C., Biochem. Biophys. Acta, 520, 38 (1978).

    Google Scholar 

  65. Hernander, O., De Los Angeles Bello, M., and Rosado, A., Biochem. Biophys. Acta, 521, 557 (1978).

    Google Scholar 

  66. Dickinson, D.G. and Baker, R.F., Proc. Nat. Acad. Sci. USA, 75, 5627 (1978).

    Google Scholar 

  67. Schafer, A., Blaschke, J.R., and Neumann, K.H., Planta, 139, 97 (1978).

    Google Scholar 

  68. Broekaert, D. and Van Parijs, R., Z. Pflanzenphysiol., 89, 169 (1978).

    Google Scholar 

  69. Nakatsu, S.L., Masek, M.A., Landrum, S., and Frenster, J.H., Nature, 248, 334 (1974).

    Google Scholar 

  70. Darzynkiewicz, Z., Traganos, F., Sharpless, T., Friend, S., and Melamid, M.R., Exp. Cell. Res., 99, 301 (1976).

    Google Scholar 

  71. Terada, M., Fried, J., Nudel, U., Rifkind, R.A., and Marks, R.A., Proc. Nat. Acad. Sci. USA, 74, 248 (1977).

    Google Scholar 

  72. Baker, W.K., Adv. Genet., 14, 133 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luchnik, A.N. Conformational transitions in closed circular DNA molecules II. Biological implications. Mol Biol Rep 6, 11–15 (1980). https://doi.org/10.1007/BF00775747

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00775747

Keywords

Navigation