Advertisement

Molecular Biology Reports

, Volume 6, Issue 3, pp 143–147 | Cite as

Characterization of [3H]-Valinomycin binding to red blood cell membrane

  • M. Herzberg
  • C. R. Levine
Article
  • 23 Downloads

Abstract

Valinomycin was tritiated by exchange and its biological activity found to be similar to that of nonlabeled drug. [3H]-valinomycin binds to red blood cell membranes following a biphasic pattern. High concentrations of the drug lead to an irreversible binding while low concentrations lead to a completely reversible binding. Maximum binding was obtained at acidic pH (pH 4.2) and physiological temperature (37°C). We demonstrate that valinomycin binds strongly to the lipidic phase of the membrane. When binding to erythrocytes and reticulocytes was compared, it was found that the mature red blood cells had less binding capacity than the reticulocytes.

Keywords

Cell Membrane Blood Cell Biological Activity Binding Capacity Lipidic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ChappellJ.B. & A.R.Crofts. Biochem. J. 95, 393–398 (1965).Google Scholar
  2. 2.
    HaroldF.M. Bacteriol. Rev. 36, 172–230 (1972).Google Scholar
  3. 3.
    IvanovV.T., I.A.Laine, N.D.Abdulaev, L.B.Senyavina, E.M.Popov, Yu.A.Ovchinnikov & M.M.Skemyakin. Biochem. Biophys. Res. Commun. 34, 803–811 (1969).Google Scholar
  4. 4.
    AgtarapA., J.W.Chamberlin, M.Pinkerton & L.Steinrauf. J. Am. Chem. Soc. 89, 5737 (1967).Google Scholar
  5. 5.
    PiodaL.A.R., H.A.Wachter, R.E.Dohner & W.Simon. Helv. Chim. Acta 50, 1373 (1967).Google Scholar
  6. 6.
    ShemyakinM.M., E.J.Vinogradova, M.V.Fugina, N.A.Aldonova, N.F.Loginova, I.D.Ryabova & I.A.Pavlenko. Experimenta 21, 548 (1965).Google Scholar
  7. 7.
    BreitbartH., H.Atlan, F.Eltes & M.Herzberg. Mol. Biol. Reports 2, 167 (1975).Google Scholar
  8. 8.
    BreitbartH. & M.Herzberg. FEBS Letters 32, 15 (1973).Google Scholar
  9. 9.
    HaynesD.M. & B.C.Pressman. J. Membrane Biol. 18, 1 (1974).Google Scholar
  10. 10.
    Pri-BarI. & O.Buchman. Int. J. Appl. Radiat. Isotopes 27, 53 (1976).Google Scholar
  11. 11.
    SchulmanH.M. Biochim. Biophys. Acta 155, 253 (1968).Google Scholar
  12. 12.
    ReedC.F., S.N.Swisher, G.V.Marinetti & E.G.Ede. J. Lab. Clin. Med. 56, 281 (1960).Google Scholar
  13. 13.
    InbarM., C.Huet, A.R.Oseroff, H.Ben-Bassat & L.Sachs. Biochim. Biophys. Acta 311, 594 (1973).Google Scholar
  14. 14.
    PaphadjoupoulosD. Biochim. Biophys. Acta 241, 254 (1971).Google Scholar
  15. 15.
    Wreschner, D., H. Dahan & M. Herzberg (in preparation).Google Scholar
  16. 16.
    BroekhuyseR.M. Biochim. Biophys. Acta 15, 307 (1968).Google Scholar

Copyright information

© Dr. W. Junk B.V. Publishers 1980

Authors and Affiliations

  • M. Herzberg
    • 1
  • C. R. Levine
    • 1
  1. 1.Department of Life SciencesBar Ilan University Ramat GanIsrael

Personalised recommendations