Advertisement

Molecular Biology Reports

, Volume 9, Issue 3, pp 185–189 | Cite as

Changes in the chromatin of the brain of developing rats: phosphorylation of chromosomal proteins and modulation of transcription

  • P. C. Supakar
  • M. S. Kanungo
Article
  • 17 Downloads

Abstract

In vitro phosphorylation of chromosomal proteins and transcription of chromatin, and their modulation by spermine were studied by incubating slices of cerebral cortex of 3–30 day old developing rats with [32Pi] and [3H]-uridine, respectively. Phosphorylation of histones increases whereas that of nonhistone chromosomal (NHC) proteins decreases during development. Spermine stimulates phosphorylation of both histones and NHC proteins. Transcription of chromatin decreases as development progresses. Phosphorylation of chromosomal proteins stimulates transcription. This is further stimulated by spermine. However, these effects decrease as development proceeds. Such functional alterations in the chromatin may be responsible for the terminal differentiation of neurons, and may have a significant role in differential gene expression during cell differentiation and development.

Keywords

Gene Expression Significant Role Cell Differentiation Cerebral Cortex Spermine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajiro, K., Borun, T. W. & Cohen, L. H., 1981. Biochemistry 20: 1445–1454.Google Scholar
  2. 2.
    Allfrey, V. G., 1977. Cold Spring Harbor Symp. Quant. Biol. 42: 1211–1236.Google Scholar
  3. 3.
    Bonner, J. et al., 1968. Methods in Enzymol. 12B: 3–65.Google Scholar
  4. 4.
    Chung, D. M., Hollandbach, R. & Costa, E., 1976. Science 193: 60–62.Google Scholar
  5. 5.
    D'Anna, J. A., Tobey, R. A., Basham, S. S. & Gurley, L. R., 1977. Biochem. Biophys. Res. Commun. 77: 187–194.Google Scholar
  6. 6.
    Elgin, S. C. R. & Bonner, J., 1970. Biochemistry 9: 4440–4447.Google Scholar
  7. 7.
    Gurley, L. R., Walters, R. A. & Tobey, R. A., 1974. J. Cell. Biol. 60: 356–364.Google Scholar
  8. 8.
    Gurley, L. R., D'Anna, J. A., Basham, S. S., Deaven, L. L. & Tobey, R. A., 1978. Eur. J. Biochem. 84: 1–15.Google Scholar
  9. 9.
    Janne, J., Poso, H. & Raina, A., 1978. Biochim. Biophys. Acta 473: 291–293.Google Scholar
  10. 10.
    Kadohama, N. & Anderson, K. M., 1977. Can. J. Biochem. 65: 513–520.Google Scholar
  11. 11.
    Kanungo, M. S., 1975. J. Theor. Biol. 53: 253–261.Google Scholar
  12. 12.
    Kanungo, M. S., 1980. Biochemistry of Ageing, Academic Press, London.Google Scholar
  13. 13.
    Kleinsmith, L. J., 1975. J. Cell. Physiol. 85: 459–475.Google Scholar
  14. 14.
    Knippers, R., Otto, B. & Bohme, R., 1978. Nucleic Acids Res. 5: 2113–2131.Google Scholar
  15. 15.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J., 1951. J. Biol. Chem. 193: 265–275.Google Scholar
  16. 16.
    Madsen, N. P., 1969. Anal. Biochem. 29: 542–544.Google Scholar
  17. 17.
    Morris, D. R., Kaffron, K. L. & Okstein, C. J., 1969. Anal. Biochem. 30: 449–453.Google Scholar
  18. 18.
    Offerbacher, S. & Klein, E. S., 1975. Biochem. Biophys. Res. Commun. 66: 375–382.Google Scholar
  19. 19.
    Panyim, S., Bieled, D. & Chalkley, R. J., 1971. J. Biol. Chem. 246: 4206–4215.Google Scholar
  20. 20.
    Park, W., Jansing, R., Stein, J. & Stein, G., 1977. Biochemistry 16: 3713–3721.Google Scholar
  21. 21.
    Schneider, W. C., 1957. Methods in Enzymol. 3: 680–684.Google Scholar
  22. 22.
    Stein, G. S., Spelsberg, T. C. & Kleinsmith, L. J., 1974. Science 183: 817–824.Google Scholar
  23. 23.
    Supakar, P. C. & Kanungo, M. S., 1981. Biochem. Biophys. Res. Commun. 100: 73–78.Google Scholar
  24. 24.
    Supakar, P. C. & Kanungo, M. S., 1982a. Biochemistry Int. 5: 381–388.Google Scholar
  25. 25.
    Supakar, P. C. & Kanungo, M. S., 1982b. Biochemistry Int. 4: 679–687.Google Scholar
  26. 26.
    Tabor, H., 1962. Biochemistry 1: 496–501.Google Scholar
  27. 27.
    Tabor, C. W. & Rosenthal, S. M., 1963. Methods in Enzymol. 6: 615–622.Google Scholar
  28. 28.
    Tabor, H., Rosenthal, S. M. & Tabor, C. W., 1958. J. Biol. Chem. 233: 907–914.Google Scholar
  29. 29.
    Takagaki, H., Hirano, S. & Nagata, Y. J., 1959. Neurochem. 4: 124–134.Google Scholar
  30. 30.
    Teng, C. S., Teng, C. T. & Allfrey, V. G., 1971. J. Biol. Chem. 246: 3597–3609.Google Scholar
  31. 31.
    Thakur, M. K. & Kanungo, M. S., 1980. Ind. J. Biochem. Biophys. 17: 81–84.Google Scholar
  32. 32.
    Wilson, E. M. & Spelsberg, T. C., 1973. Biochim. Biophys. Acta 332: 145–154.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • P. C. Supakar
    • 1
  • M. S. Kanungo
    • 1
  1. 1.Biochemistry Laboratory, Department of ZoologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations