Advertisement

Molecular Biology Reports

, Volume 9, Issue 4, pp 253–257 | Cite as

Conformational changes in the chromatin of the brain of developing rats and its modulation by zinc chloride

  • P. C. Supakar
  • M. S. Kanungo
Article

Abstract

Conformational changes in the chromatin of the brain were studied during the development of the rat (3-, 14-and 30-day old) using microccoccal nuclease (MCN) and DNase I. The rate and extent of digestion of chromatin by MCN is not altered during development. However, pre-incubation of slices of the cerebral cortex with ZnCl2 increases the initial rate of digestion by MCN by 2–3-fold, and also enhances the production of monomer DNA. The rate and extent of digestion of chromatin by DNase I is greater in an early stage of development. The initial rate of digestion by DNase I is stimulated by 3–4-fold after ZnCl2 treatment. These data show that changes occur in the conformation of chromatin, particularly in the internucleosomal region of brain cells as they pass from dividing to the non-dividing state.

Keywords

Chloride Zinc Cerebral Cortex Conformational Change Initial Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradbury E. M., 1977. In: The Organization and Expression of Eukaryotic Genome (Bradbury E. M. & Javaherian K., eds.) pp. 83–98. Academic Press, New York.Google Scholar
  2. 2.
    Thomas J. O., 1977. In: International Review of Biochemistry (Clarke B. F. C., ed.) Vol. 17, Biochemistry of Nucleic Acids II, University Park Press, Baltimore, U.S.A.Google Scholar
  3. 3.
    Kornberg R. D., 1977. Ann. Rev. Biochem. 46: 931–954.Google Scholar
  4. 4.
    McGhee J. D. & Felsenfeld G., 1980. Ann. Rev. Biochem. 49: 1115–1156.Google Scholar
  5. 5.
    Lutter L. C., 1978. Nucl. Acids Res. 6: 41–56.Google Scholar
  6. 6.
    Prunell A. & Kornberg R. D., 1978. Cold Spring Harbor Symp. Quant. Biol. 42: 103–108.Google Scholar
  7. 7.
    Garel A. & Axel R., 1976. Proc. Natl. Acad. Sci. U.S.A. 73: 3966–3970.Google Scholar
  8. 8.
    Weintraub H. & Groudine M., 1976. Science 93: 848–858.Google Scholar
  9. 9.
    Tanphaichitr N. & Chalkley R., 1976. Biochemistry 15: 1610–1614.Google Scholar
  10. 10.
    Ord M. G. & Stocken L. A., 1978. Biochem. J. 176: 615–618.Google Scholar
  11. 11.
    Supakar P. C. & Kanungo M. S., 1982. Biochem. Int. 4: 679–687.Google Scholar
  12. 12.
    Supakar P. C. & Kanungo M. S., 1982. Biochemistry Int. 5: 381–388.Google Scholar
  13. 13.
    Hewish D. R. & Burgoyne L. A., 1973. Biochem. Biophys. Res. Commun. 52: 504–510.Google Scholar
  14. 14.
    Panyim S., Bield D. & Chalkley R., 1973. J. Biol. Chem. 246: 4215.Google Scholar
  15. 15.
    Loening V. E., 1967. Biochem. J. 102: 251–257.Google Scholar
  16. 16.
    Maniatis T., Jeffrey A. & Van deSande H., 1975. Biochemistry 14: 3787–3794.Google Scholar
  17. 17.
    Sollner-Webb B. & Felsenfeld G., 1977. Cell 10: 537–547.Google Scholar
  18. 18.
    Candido E. P. M., Reeves R. & Davie J. R., 1978. Cell 14: 105–113.Google Scholar
  19. 19.
    Simpson R. T., 1978. Cell 13: 691–699.Google Scholar
  20. 20.
    Weisbrod S., Groudine M. & Weintraub H., 1980. Cell 19: 289–301.Google Scholar
  21. 21.
    Tanphaichitr N., Moore K. G., Granner D. K. & Chalkley R., 1976. J. Cell Biol. 69: 43–50.Google Scholar
  22. 22.
    Balhorn R., Chalkley R. & Granner D., 1972. Biochemistry 11: 1094–1098.Google Scholar
  23. 23.
    Paulson J. R. & Taylor S. S., 1982. J. Biol. Chem. 257: 6064–6072.Google Scholar
  24. 24.
    Romhanyi Y., Antoni S. F., Nikolics K., Meszaros G. & Farago A., 1982. Biochim. Biophys. Acta 701: 57–62.Google Scholar
  25. 25.
    Ajiro K., Borun T. W. & Cohen L. H., 1981. Biochemistry 20: 1445–1454.Google Scholar
  26. 26.
    Wilkinson D. J., Shinde B. G. & Hohmann P., 1982. J. Biol. Chem. 257: 1247–1252.Google Scholar
  27. 27.
    Dolby T. W., Belmount A., Borun T. W. & Nicolini C. J., 1981. Cell Biol. 89: 78–85.Google Scholar
  28. 28.
    Supakar P. C. & Kanungo M. S., 1981. Biochem. Biophys. Res. Commun. 100: 73–78.Google Scholar
  29. 29.
    Dimitriadis C. J. & Tata J. R., 1980. Biochem. J. 187: 467–477.Google Scholar
  30. 30.
    Mathis D. T., Oudet P., Wasylyk B. & Chambon P., 1978. Nucl. Acids Res. 5: 3523–3547.Google Scholar
  31. 31.
    Kanungo M. S., 1975. J. Theor. Biol. 53: 253–261.Google Scholar
  32. 32.
    Kanungo M. S., 1980. Biochemistry of Ageing, Academic Press, London.Google Scholar

Copyright information

© Dr W. Junk Publishers 1984

Authors and Affiliations

  • P. C. Supakar
    • 1
  • M. S. Kanungo
    • 1
  1. 1.Biochemistry Laboratory, Department of ZoologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations