Skip to main content
Log in

Metastable austenitic Cr−Mn steels

  • Structural Steels
  • Published:
Metal Science and Heat Treatment Aims and scope

Conclusions

  1. 1.

    The contact strength of machine parts operating under various conditions of contact dynamic loading (cavitation-erosion, gas erosion, friction, and impact-abrasive wear) can be improved substantially by using Cr−Mn MAS steels.

  2. 2.

    The resistance of Cr−Mn MAS depends on the conditions of CDL, the rate of the martensitic transformation, and the properties of the phases formed. For applications involving cavitation we recommend steels containing 0.1–0.3% (C+N) of the 10Kh14AG12-30Kh10G10 type, in which the γ→ε and γ→α martensitic transformations occur at a high rate; steels with a high carbon content (0.6–0.8%) in which the γ→α transformation is the primary transformation under load (steels of the 60Kh5G10L-70Kh4G8L type) are promising for impact-abrasive wear conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. V. N. Arskii and A. P. Gulyaev, “Formation rate of strain martensite,” Fiz. Met. Metalloved.,6, No. 5, 866 (1958).

    Google Scholar 

  2. M. G. Gaidukov and V. D. Sadovskii, “Change in the coefficient of strengthening associated with the martensitic transformation during plastic deformation,” Metalloved. Term. Obrab. Met., No. 5, 4 (1958).

    Google Scholar 

  3. O. A. Bannykh and Yu. K. Kovneristyi, Steels for Operation at Low Temperatures [in Russian], Metallurgiya, Moscow (1969).

    Google Scholar 

  4. L. G. Zhuravlev, M. M. Shteinberg, and O. P. Chernogorova, “Rules governing the formation of martensite in Metastable austenitic steels,” in: Problems of the Production and Treatment of Steel, Transactions of the Chelyabinsk Polytechnic Institute [in Russian], No. 202 (1978), p. 89.

  5. B. Cina, J. Iron Steel Inst.,177, No. 4, 406 (1954).

    Google Scholar 

  6. H. Otte, Acta Met., No. 5, 614 (1957).

    Google Scholar 

  7. V. Zackay et al., TASM,60, 252 (1967).

    Google Scholar 

  8. I. Ya. Georgieva, “TRIP steels-a new type of high-strength steels with high ductility,” Metalloved. Term. Obrab. Met., No. 3, 18 (1976).

    Google Scholar 

  9. I. N. Bogachev and R. I. Mints, Cavitation Failure of Iron-Carbon Alloys [in Russian], Mashgiz, Moscow (1959).

    Google Scholar 

  10. I. N. Bogachev and R. I. Mints, Improving the Cavitation-Erosion Reisstance of Machine Parts [in Russian], Mashinostroenie, Moscow (1964).

    Google Scholar 

  11. I. N. Bogachev, Cavitation Failure and Cavitation Failure and Cavitation Resistant Alloys [in Russian], Metallurgiya, Moscow (1972).

    Google Scholar 

  12. B. A. Potekhin and I. N. Bogachev, “Stress relaxation in Cr−Mn austenitic steel 30Kh10G10,” Fiz. Met. Metalloved.,18, No. 2, 257 (1964).

    Google Scholar 

  13. B. A. Kulishenko et al. “Wear resistant materials for hard facing the wheels of mining cars,” Tsvetn. Metal., No. 11, 36 (1979).

    Google Scholar 

  14. A. A. Rudakov and I. N. Bogachev, “Properties of Cr−Mn−Ni high-strength cavitation resistant stainless steels,” Fiz. Khim. Mekh. Mater., No 4, 57 (1977).

    Google Scholar 

  15. I. N. Bogachev and E. V. Savalei, “Effect of warm rolling on the martensitic transformation and properties of austentic steels,” Metalloved. Term. Obrab. Met., No. 12, 42 (1974).

    Google Scholar 

  16. L. G. Korshunov, “Wear resistance and structural transformations in metastable austenitic steels during friction,” in: Contrast Strength of Metallic Materials, Transactions of the S. M. Kirov Ural Polytechnic Institute, No. 210 (1972), p. 72.

  17. I. N. Bogachev, M. A. Fillippov, et al., “Wear resistant metastable steels based on austenite with manganese,” Liteinoe Proizvod. No. 9, 16 (1975).

    Google Scholar 

  18. P. Yu. Volosevich and V. N. Gridnev, “Effect of manganese and carbon on EDU in Fe−Mn and Fe−Mn−C alloys,” in: Applications of Transmission and Scanning Electron Microscopy in Metal Science [in Russian], MDNTP (1976), p. 141.

  19. L. G. Korshunov et al., “Effect of carbon on strain hardening and wear resistance of cast manganese austenitic steels,” in: Heat Treatment and Physics of Metals, Transactions of the S. M. Kirov Ural Polytechnic Institute, No. 3 (1977), p. 24.

  20. L. S. Livshits and S. N. Platova, “Behavior of steels with unstable austenite under conditions of gas-abrasive wear,” Izv. Vysh. Uchebn. Zaved., Neft' Gaz, No. 4, 80 (1980).

    Google Scholar 

  21. H. Schumann, Neue Hütte, No. 3, 147 (1966).

    Google Scholar 

  22. L. I. Lysak and B. I. Nikolin, Physical Basis of Heat Treating Steels [in Russian], Tekhnika, Kiev (1975).

    Google Scholar 

Download references

Authors

Additional information

S. M. Kirov Ural Polytechnic Institute. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 2–7, November, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, M.A. Metastable austenitic Cr−Mn steels. Met Sci Heat Treat 24, 751–755 (1982). https://doi.org/10.1007/BF00774728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00774728

Keywords

Navigation