Advertisement

Metal Science and Heat Treatment

, Volume 30, Issue 11, pp 867–872 | Cite as

Influence of superplastic deformation on the structure of high-speed steels of different metallurgical nature

  • T. A. Chernyshova
  • A. E. Gvozdev
  • A. S. Bazyk
  • L. K. Bolotova
Technical Information
  • 20 Downloads

Conclusions

  1. 1.

    Superplastic deformation of R6M5 and 10R6M5-MP high-speed steels leads to improvement in their structure including an increase in the degree of dispersion and equiaxiality of the carbide phase and in the alloy content of the solid solution.

     
  2. 2.

    The degree of improvement in the structure as the result of superplastic deformation conducted under the optimum temperature and rate conditions depends upon the original degree of dispersion and uniformity of distribution of carbide phase in high-speed steels.

     

Keywords

Carbide Solid Solution Rate Condition Carbide Phase Alloy Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. S. Tikhonov, The Effect of Superplasticity of Metals and Alloys [in Russian], Nauka, Moscow (1978).Google Scholar
  2. 2.
    A. S. Bazyk and A. S. Tikhonov, The Use of the Superplasticity Effect in Modern Metal-working [in Russian], Nauch.-Issled. Inst. Inf. po Mashinostr., Moscow (1977).Google Scholar
  3. 3.
    A. S. Bazyk, M. V. Kazakov, A. S. Pustovgar, and A. E. Gvozdev, "A low-waste method of production of precision blanks of high-speed steels with the use of the superplasticity effect," Kuz.-Shtamp. Proizvod., No. 1, 12–14 (1983).Google Scholar
  4. 4.
    A. P. Gulyaev and L. M. Sarmanova, "The production plasticity of high-speed steels," Metalloved. Term. Obrab. Met., No. 7, 2 (1969).Google Scholar
  5. 5.
    A. S. Bazyk, A. S. Pustovgar, M. V. Kazakov, and A. E. Gvozdev, "The influence of deformation under conditions of superplasticity on the structure and properties of high-speed steels," Metalloved. Term. Obrab. Met., No. 3, 21–24 (1981).Google Scholar
  6. 6.
    A. P. Gulyaev, "Superplasticity," in: Summaries of Papers for the First All-Union Scientific Conference on "The Superplasticity of Metals" [in Russian], Ufa (1978), pp. 14–16.Google Scholar
  7. 7.
    V. E. Panin, V. A. Likhachev, and Y. V. Grinyaev, Structural Levels of Deformation of Solids [in Russian], Novosibirsk, Nauka (1985).Google Scholar
  8. 8.
    M. V. Grabskii, The Structural Superplasticity of Metals [Russian translation], Metallurgiya, Moscow (1975).Google Scholar
  9. 9.
    I. I. Novikov and V. K. Portnoi, The Superplasticity of Alloys with Superfine Grain Size [in Russian], Metallurgiya, Moscow (1981).Google Scholar
  10. 10.
    N. Peiton and K. Hamilton (eds.), Superplastic Forming of Constructional Alloys [Russian translation], Metallurgiya, Moscow (1984).Google Scholar
  11. 11.
    O. A. Kaibyshev, The Superplasticity of Industrial Alloys [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  12. 12.
    S. I. Karatushin, G. A. Vorob'eva, and N. I. Koval', "The influence of carbon content on the characteristics of superplasticity of steels," Izv. Akad. Nauk SSSR, Met., No. 5, 149–151 (1976).Google Scholar
  13. 13.
    A. P. Gulyaev, The Superplasticity of Steel [in Russian], Metallurgiya, Moscow (1982).Google Scholar
  14. 14.
    A. N. Gerasin, A. E. Gvozdev, A. S. Tikhonov, and A. S. Bazyk, "Means of increasing the effectiveness of use of high-speed steels in tool production," in: Organizational and Economic Questions of Increasing the Effectiveness of Production in a Machine Building Plant [in Russian], Tula (1984), pp. 34–40.Google Scholar
  15. 15.
    B. A. Geller, Tool Steels [in Russian], Metallugiya, Moscow (1983).Google Scholar
  16. 16.
    V. L. Kolmogorov (ed.), Plasticity and Fracture [in Russian], Metallurgiya, Moscow (1977).Google Scholar
  17. 17.
    M. Ch. Sorsorow, T. A. Cernyshova, A. S. Bazyk, et al., "Anwendung der Superplastizität für die Verformung gegossener und gesinterter Schnellarbeits stähle," Neue Hütte,30, No. 41, 422–425 (1985).Google Scholar
  18. 18.
    O. M. Smirnov, Working of Metals by Pressure in the Superplastic Condition [in Russian], Mashinostroenie, Moscow (1979).Google Scholar
  19. 19.
    V. A. Landa, "Quantitative separate x-ray diffraction analysis of multiphase carbides without isolation of them from the steel," Zavod. Lab.,31, No. 8, 989–994 (1965).Google Scholar
  20. 20.
    V. A. Landa and A. M. Baikov, "Preparation of the surface of a flat specimen for semiquantitative x-ray diffraction analysis of carbides in high-speed steels," Zavod. Lab.,36, No. 6, 701–702 (1970).Google Scholar
  21. 21.
    K. Lücke, "Zur qualitativen Beschreibung des Gefuges," Z. Metallkunde, 948–956 (1984).Google Scholar
  22. 22.
    S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • T. A. Chernyshova
  • A. E. Gvozdev
  • A. S. Bazyk
  • L. K. Bolotova

There are no affiliations available

Personalised recommendations