The effect of sintering temperature on the strength of powder copper subjected to repeated pressing

  • A. P. Savitskii
  • V. N. Zhdanova
  • É. N. Girya
Technology and Properties of Powders and Sintered Components

Summary

  1. 1.

    Sintered copper produced by repeated pressing and sintering at low temperatures is markedly superior to cast commercial copper in hardness and resistance to compression.

     
  2. 2.

    High-temperature sintering is not essential for obtaining powder copper with a minimum pore content. Low porosity may be attained by repeated compaction and annealing at relatively low temperatures.

     
  3. 3.

    The mechanical properties of sintered copper increase with decreasing sintering temperature. When materials obtained at different sintering temperatures are compared with one another and with cast copper, it is found that the greatest difference in the resistance to compression is observed at low degrees of deformation.

     
  4. 4.

    The deterioration of mechanical properties and improvement of ductility at higher sintering temperatures may be explained by grain growth and a coarsening of the block structure.

     
  5. 5.

    The X-ray diffraction method of studying recrystallization, involving determination of the number of spots on interference lines in X-ray photographs, fails to detect the process of collective recrystallization during the sintering of compacts from electrolytic copper powder at up to 1000°C.

     

Keywords

Recrystallization Ductility Compaction Sinter Temperature Block Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. V.Savitskii et al., Izv. Vysshikh Uchebn. Zavedenii, Fiz., 6,57 (1962).Google Scholar
  2. 2.
    B. Ya. Pines and A. F. Sidorenko, Izv. Vysshikh Uchebn. Zavedenii, Fiz., 1,23 (1960).Google Scholar
  3. 3.
    A. B. Middleton, L. B. Pfeil, and E. C. Rhodes, J. Inst. Metals, N 3, 75 595 (1949).Google Scholar
  4. 4.
    I. M. Fedorchenko and R. A. Andrievskii, Principles of Powder Metallurgy [in Russian] Kiev, Acad. Sci. Ukr. SSR Press, (1961).Google Scholar
  5. 5.
    P. Coulomb and J. Friedel, Dislocations and Mechanical Properties of Crystals [Russian translation] (1960) p. 366.Google Scholar
  6. 6.
    K. V. Savitskii, V. N. Zhdanova, A. P. Savitskii, and V. A. Kulikov, Collection: Investigations of Heat-Resisting Alloys [in Russian] Moscow, Acad. Sci. USSR Press, 9 (1961) p. 119.Google Scholar
  7. 7.
    H. H. Hausner, J. Metals, N 3, 331 (1957).Google Scholar
  8. 8.
    V. N. Zhdanova, A. P. Savitskii, and V. I. Stolyarova, Izv. Vysshikh Uchebn. Zavedenii, Fiz., 2 17 (1958).Google Scholar
  9. 9.
    V. I. Iveronova and N. N. Osipenko, Fiz. Metal i Metalloved.,10, 736 (1960).Google Scholar
  10. 10.
    I. M. Fedorchenko, Problems of Powder Metallurgy and Strength of Materials [in Russian] Kiev, Acad. Sci. Ukr. SSR Press, 1 (1954).Google Scholar
  11. 11.
    G. V. Kurdyumov and M. D. Perkas, Collection: Investigations of Heat-Resisting Alloys [in Russian] Moscow, Acad. Sci. USSR Press, 9 (1962) p. 3.Google Scholar

Copyright information

© Consultants Bureau Enterprises, Inc. 1965

Authors and Affiliations

  • A. P. Savitskii
    • 1
  • V. N. Zhdanova
    • 1
  • É. N. Girya
    • 1
  1. 1.Siberian Physicotechnical Scientific Research InstituteUSSR

Personalised recommendations