Annals of Global Analysis and Geometry

, Volume 13, Issue 3, pp 227–230 | Cite as

Holomorphic flat projective structures on projective threefolds

  • Edoardo Ballico
Article
  • 25 Downloads

Abstract

Here we classify projective 3-folds with a holomorphic flat projective structure and Kodaira dimension ≠ 1 or 2.

Key words

Holomorphic flat projective structure holomorphic projective connection Mori theory rational curves projective threefolds extremal ray 

MSC 1991

14 J 30 32 J 17 53 B 10 53 C 99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beltrametti, M.: Contractions of non numerically effective extremal rays in dimension 4. In: Kurke, H.; Roczen, M. (Eds.):Proceedings of the Conference on Algebraic Geometry, Berlin 1985. Tubner-Texte Math. Bd. 92, Leipzig 1985, pp. 24–37.Google Scholar
  2. [2]
    Fujiki, A.: On the structure of compact complex manifolds in C. In: Iitaka, S.; Morikawa, H. (Eds.):Algebraic Varieties and Analytic Varieties. Adv. Stud. Pure Math. 1, Kinokuya North-Holland 1982, pp. 229–300.Google Scholar
  3. [3]
    Gunning, R.:On Uniformization of Complex Manifolds. Math. Notes, Princeton, 1978.Google Scholar
  4. [4]
    Kawamata, Y.: Small contractions of four dimensional algebraic models.Math. Ann. 284 (1989), 595–600.Google Scholar
  5. [5]
    Kawamata, Y.: On the Abundance Theorem for minimal threefolds.Invent. Math. 108 (1992), 229–246.Google Scholar
  6. [6]
    Kawamata, Y.;Matsuda, K.;Matsuki, K.: Introduction to the Minimal Model Problem. In: Oda, T. (Ed.):Algebraic Geometry, Sendai 1985. Adv. Stud. Pure Math. 10, Kinokuya North-Holland 1987, pp. 283–360.Google Scholar
  7. [7]
    Kobayashi, S.;Ochiai, T.: Holomorphic projective structures and compact complex surfaces.Math. Ann. 249 (1980), 75–94.Google Scholar
  8. [8]
    Kollar, J.: Flip, Flops, Minimal Models etc.Surv. Differ. Geom. 1 (1991), 113–199.Google Scholar
  9. [9]
    Kollar, J.:Shafarevich maps, vanishing theorems and automorphic forms. To appear.Google Scholar
  10. [10]
    Mori, S.: Threefolds whose canonical bundles are not numerically effective.Ann. Math. 116 (1982), 133–176.Google Scholar
  11. [11]
    Ueno, K.: Bimeromorphic geometry of algebraic and analytic threefolds. In: Conte, A. (Ed.):Algebraic Threefolds. Proceedings, 1981. Lect. Notes Math. 947, Springer-Verlag, 1982, pp. 1–34.Google Scholar
  12. [12]
    Ueno, K.: On compact analytic threefolds with non trivial Albanese tori.Math. Ann. 278 (1987), 41–70.Google Scholar
  13. [13]
    Wisniewski, J.: Length of extremal rays and generalized adjunction.Math. Z. 200 (1989), 409–427.Google Scholar
  14. [14]
    Ye, Y.-G.: On Fano manifolds with normal projective connections.Int. J. Math. 5 (1994), 265–271.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Edoardo Ballico
    • 1
  1. 1.Dept. of MathematicsUniversity of TrentoPovo (TN)Italy

Personalised recommendations