General Relativity and Gravitation

, Volume 17, Issue 12, pp 1153–1163 | Cite as

Finslerian post-Riemannian corrections to the equations of geodesics

  • A. K. Aringazin
  • G. S. Asanov
Research Articles


The generalization of the ordinary hypothesis of Riemannian geodesics for test bodies motion to the hypothesis of Finslerian geodesies gives rise to observable consequences which can explicitly be described in the case of the static gravitational field. The Finslerian corrections prove to be those in the velocity of motion and lead, in particular, to centennial changes in the eccentricities of the planetary orbits. The residual change in the eccentricity of the Mercurian orbit unexplainable by the Riemannian post-Newtonian corrections is used to estimate the order of a characteristic Finslerian parameter.


Body Motion Differential Geometry Gravitational Field Observable Consequence Centennial Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coley, A. A. (1982).Nuovo Cimento,70, 89.Google Scholar
  2. 2.
    Asanov, G. S. (1981).Found. Phys.,11, 137.Google Scholar
  3. 3.
    Asanov, G. S. (1982).Aequationes Mathematicae,24, 207.Google Scholar
  4. 4.
    Asanov, G. S. (1985).Finsler Geometry, Relativity and Gauge Theories (D. Reidel, Dordrecht).Google Scholar
  5. 5.
    Roxburgh, I. W., and Tavakol, R. K. (1979).Gen. Rel. Grav.,10, 307.Google Scholar
  6. 6.
    Coley, A. A. (1982).Gen. Rel. Grav.,14, 1107.Google Scholar
  7. 7.
    Coley, A. A. (1983).Gen. Rel. Grav.,15, 997.Google Scholar
  8. 8.
    Clémence, G. M. (1943).Astron. Papers,11, part 1, 9.Google Scholar
  9. 9.
    Rund, H. (1959).The Differential Geometry of Finsler Spaces (Springer, Berlin).Google Scholar
  10. 10.
    Asanov, G. S. (1984).Ann. Phys. (Leipzig),41, 263.Google Scholar
  11. 11.
    Laubscher, R. E. (1971).Astron. Astrophys.,13, 426.Google Scholar
  12. 12.
    Duncombe, R. L. (1958).Astron. Papers,16, part 1, 3.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • A. K. Aringazin
    • 1
  • G. S. Asanov
    • 1
  1. 1.Department of Theoretical PhysicsMoscow State UniversityMoscowUSSR

Personalised recommendations