Advertisement

Annals of Global Analysis and Geometry

, Volume 11, Issue 4, pp 331–344 | Cite as

Minimal surfaces with prescribed topological type on a Schwarzian chain inM c 3

  • Ivo Nowak
Article

Abstract

Similar to the investigations of unstable polygonal minimal surfaces by Courant [1] we introduce here a variational principle for the free boundary problem with prescribed topological type which produces minimal surfaces in Riemannian manifolds with constant curvature. For special boundary configurations the surfaces have no branch points. The approach can be applied to numerical algorithms since it is constructive.

Key words

Minimal surfaces quasi-minimal surfaces variational principle Schwarzian chain 

MSC 1991

53 A 10 49 Q 05 58 E 12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Courant, R.:Dirichlet's Principle. Intersience, New York 1950.Google Scholar
  2. [2]
    Dierkes, U.; Hildebrandt, S.; Küster, A.; Wohlrab, O.:Minimal Surfaces I and II. Springer-Verlag, 1991.Google Scholar
  3. [3]
    Harth, F.P.: Minimalflächen mit freiem Rand in Riemannschen Mannigfaltigkeiten.Manuscripta Math. 7 (1972), 35–54.Google Scholar
  4. [4]
    Heinz, E.: Über die analytische Abhängigkeit der Lösungen eines linearen elliptischen Randwertproblems von Parametern.Nachr. Akad. Wiss. Göttingen (1979), 1–20.Google Scholar
  5. [5]
    Heinz, E.: On Surfaces of Constant Mean Curvature with Polygonal Boundaries.Arch. Rational Mech. Anal. 36 (1969).Google Scholar
  6. [6]
    Hildebrandt, S.: Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendung auf die Kapillaritätstheorie. II. Freie Ränder.Arch. Rational Mech. Anal. 39 (1970).Google Scholar
  7. [7]
    Hinze, M.:Zur numerischen Behandlung des MARX-SHIFFMAN-Randwertproblems. Diplomarbeit, Bonn 1989.Google Scholar
  8. [8]
    Jost, J.: Embedded Minimal Disks with a Free Boundary on a Polyhedron in ℝ3.Math. Z. 199 (1988).Google Scholar
  9. [9]
    Karcher, H.;Pinkall, U.;Sterling, I.: New Minimal Surfaces inS 3.J. Differential Geom. 28 (1988), 169–185.Google Scholar
  10. [10]
    Lawson Jr., H.B.: Complete Minimal Surfaces inS 3.Ann. of Math. 92 (1970), 335–374.Google Scholar
  11. [11]
    Lewerenz, F.: Eine Bemerkung zu den Marx-Shiffman'schen Minimalvektoren bei Polygonen.Arch. Rational Mech. Anal. 75 (1981).Google Scholar
  12. [12]
    Marx, I.: On the Classification of Unstable Minimal Surfaces with Polygonal Bounderies.Comm. Pure Appl. Math. 8 (1955), 235–244.Google Scholar
  13. [13]
    Nitsche, J.C.C.: Stationary partitioning of convex bodies.Arch. Rational Mech. Anal. 89 (1985), 1–19.Google Scholar
  14. [14]
    Polthier, K.:Neue Minimalflächen in H 3. Diplomarbeit, Bonn 1989.Google Scholar
  15. [15]
    Smyth, B.: Stationary minimal surfaces with boundary on a simplex.Invent. Math. 76 (1984), 411–420.Google Scholar
  16. [16]
    Ströhmer, G.: Instabile Minimalflächen in Riemannschen Mannigfaltigkeiten nichtpositiver Schnittkrümmung.J. Reine Angew. Math. 315 (1980), 16–39.Google Scholar
  17. [17]
    Ströhmer, G.: Instabile Minimalflächen mit halbfreien Rand.Analysis 2 (1982), 315–335.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Ivo Nowak
    • 1
  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations