Journal of Materials Science

, Volume 14, Issue 3, pp 583–591 | Cite as

Determination of the plastic behaviour of solid polymers at constant true strain rate

  • C. G'sell
  • J. J. Jonas
Papers

Abstract

The methods of conventional tensile testing as applied to solid polymers are compared and reviewed critically. Experiments were performed using these techniques, and it is shown that large variations in local strain rate occur while necking and cold-drawing take place. A new tensile testing method is described in which the samples are tested atconstant local true strain rate. This technique is based on the use of a diameter transducer, an exponential voltage generator and a closed-loop testing machine. Flow curves for poly(vinyl chloride) and high density polyethylene were determined at room temperature over the strain rate range of 10−1 to 10−4 sec−1. It is shown that the flow behaviour of these two polymers can be approximated by the constitutive relation:\(\sigma = K \cdot \exp [(\gamma _ \in /2) \in ^2 ] \cdot \dot \in ^m\), whereK andγ are constants andm, the rate sensitivity, is in the range 0.02 to 0.06. It is concluded that the positive curvature of the log σ flow curve is responsible for the stabilization of flow localization associated with cold drawing, and that the rate sensitivity plays a much smaller role.

Keywords

Tensile Testing Flow Curve High Density Polyethylene Rate Sensitivity Vinyl Chloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Cross andR. N. Haward,J. Polymer Sci. 11 (1973) 2423.Google Scholar
  2. 2.
    H. Oberst andW. Retting,J. Macromol. Sci. -Phys. B5(3) (1971) 559.Google Scholar
  3. 3.
    J. M. Andrews andI. M. Ward,J. Mater. Sci. 5 (1970) 411.Google Scholar
  4. 4.
    K. Jäckel,Kolloid Z. 137 (1954) 130.Google Scholar
  5. 5.
    Yu. S. Lazurkin,J. Polymer Sci. 30 (1958) 595.Google Scholar
  6. 6.
    A. Utsuo andR. S. Stein,ibid. 5 (1967) 583.Google Scholar
  7. 7.
    R. N. Haward, B. M. Murphy andE. F. T. White,ibid. A2–9 (1971), 801.Google Scholar
  8. 8.
    G. Pezzin, G. Ajroldi, T. Casiraghi, C. Garbuglio andG. Vittadini,J. Appl. Polymer Sci. 16 (1972) 1839.Google Scholar
  9. 9.
    C. A. Pampillo andL. A. Davis,J. Appl. Phys. 43 (1972) 4277.Google Scholar
  10. 10.
    S. Bahadur,Polymer Eng. Sci. 13 (1973) 266.Google Scholar
  11. 11.
    G. Meinel andA. Peterlin,J. Polymer Sci. A2–9 (1971) 67.Google Scholar
  12. 12.
    F. H. Müller andK. Jäckel,Kolloid Z. 129 (1952) 145.Google Scholar
  13. 13.
    P. Brauer andF. H. Müller,ibid. 135 (1954) 65.Google Scholar
  14. 14.
    I. Marshall andA. B. Thompson,J. Appl. Chem. 4 (1954) 145.Google Scholar
  15. 15.
    P. I. Vincent,Polymer 1 (1960) 7.Google Scholar
  16. 16.
    I. H. Hall,J. Appl. Polymer Sci. 12 (1968) 739.Google Scholar
  17. 17.
    C. G'sell andJ. J. Jonas, to be published.Google Scholar
  18. 18.
    I. M. Ward, “Mechanical Properties of Solid Polymers” (Wiley-Interscience, London, 1971) p. 275.Google Scholar
  19. 19.
    P. W. Bridgman,Trans. Amer. Soc. Met. 32 (1944) 553.Google Scholar
  20. 20.
    P. F. Thomason,Int. J. Mech. Sci. 11 (1969) 481.Google Scholar
  21. 21.
    N. Brown andI. M. Ward,J. Polymer Sci. A2–6 (1968) 607.Google Scholar
  22. 22.
    Y. Wada andA. Nakayama,J. Appl. Polymer Sci. 15 (1971) 183.Google Scholar

Copyright information

© Chapman and Hall Ltd 1979

Authors and Affiliations

  • C. G'sell
    • 1
  • J. J. Jonas
    • 1
  1. 1.Department of Metallurgical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations