Skip to main content
Log in

Oxidative stabilization of acrylic fibres

Part 1 Oxygen uptake and general model

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanism of oxidative stabilization of acrylic fibres is characterized by two limiting cases which are determined by the fibre chemistry, the reaction conditions, and the diameter of the filament. These limiting cases correspond to diffusion-limited and reaction-limited kinetic processes. Although the chemistry of stabilization is too complex to specify, the various reactions are separated into two categories: those which occur prior to or concurrently with polymerization of the nitrile groups, called “prefatory reactions”; and those which occur subsequent to nitrile polymerization, called “sequent reactions”. Under conditions which allow the prefatory reactions to occur significantly before the sequent reactions, the diffusion of oxygen to reactive sites is limited by previously oxidized material; and the fibre shows a typical two-zone morphology. Under conditions where the prefatory and sequent reactions occur sequentially, the overall stabilization process is limited by the rate of the prefatory reactions; but a skin is established at the fibre surface which acts as an oxygen barrier. Data from a variety of sources, including oxygen analysis, microscopic examination, fibre residue after etching, tension developed in fibres held at constant length, and small-angle X-ray patterns, are cited as evidence for the two limiting cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Grassie andR. McGuchan,Europ. Polymer J. 6 (1970) 1277.

    Google Scholar 

  2. Idem, ibid. 7 (1971) 1091.

    Google Scholar 

  3. Idem, ibid. 7 (1971) 1357.

    Google Scholar 

  4. Idem, ibid. 7 (1971) 1053.

    Google Scholar 

  5. Idem, ibid. 8 (1972) 243.

    Google Scholar 

  6. Idem, ibid. 8 (1972) 257.

    Google Scholar 

  7. Idem, ibid. 8 (1972) 865.

    Google Scholar 

  8. Idem, ibid. 9 (1973) 113.

    Google Scholar 

  9. Idem, ibid. 9 (1973) 507.

    Google Scholar 

  10. J. W. Johnson, W. Potter, P. G. Rose andG. Scott,Brit. Polymer J. 4 (1972) 527.

    Google Scholar 

  11. E. Fitzer andD. J. Muller,ACS Polymer Preprints 14 (1973) 397.

    Google Scholar 

  12. Idem, Makromol. Chem. 144 (1971) 117.

    Google Scholar 

  13. O. P. Bahl andL. M. Manocha,Agnew. Makromol. Chem. 48 (1975) 145.

    Google Scholar 

  14. D. J. Muller, E. Fitzer andA. K. Fiedler, Proceedings of the International Carbon Fibres Conference (Plastics Institute, London, 1971) p. 10.

    Google Scholar 

  15. W. Watt andW. Johnson,Appl. Polymer Symp. 9 (1969) 215.

    Google Scholar 

  16. N. Grassie andJ. N. Hay,J. Polymer Sci. 56 (1962) 189.

    Google Scholar 

  17. A. J. Clarke andJ. E. Bialey,Nature 243 (1973) 146.

    Google Scholar 

  18. S. I. Stupp andS. H. Carr,J. Polymer Sci., Polymer Phys. Ed. 15 (1977) 485.

    Google Scholar 

  19. B. Danner andJ. Meybeck, Proceedings of the International Carbon Fibres Conference (Plastics Institute, London, 1971) p. 36.

    Google Scholar 

  20. K. Miyamichi, M. Okamoto, O. Ishizuka andM. Katayama,Sen-i Gakkaishi 22 (1969) 538 (translation available from Royal Aircraft Establishment, UK).

    Google Scholar 

  21. W. Watt andJ. Green, Proceedings of the International Carbon Fibres Conference (Plastics Institute London, 1971) p. 23.

    Google Scholar 

  22. W. Watt andW. Johnson,Nature 257 (1975) 210.

    Google Scholar 

  23. R. H. Knibbs,J. Microscopy 94 (1971) 273.

    Google Scholar 

  24. P. J. Goodhew, A. J. Clarke andJ. E. Bailey,Mater. Sci. Eng. 17 (1975) 3.

    Google Scholar 

  25. L. H. Peebles Jr. Encyclopedia of Polymer Science and Technology”, Supplementary Vol. 1 (Wiley, New York, 1976) p. 1.

    Google Scholar 

  26. W. Watt andW. Johnson, Proceedings of the 3rd Conference on Industrial Carbon and Graphite (Society of Chemical Industry, London, 1970) p. 417.

    Google Scholar 

  27. G. Love, M. G. Cox andV. D. Scott,Mater. Res. Bull. 10 (1975) 815.

    Google Scholar 

  28. S. B. Warner, Sc.D. Thesis, MIT (1976).

  29. G. Hinrichsen,J. Appl. Polymer Sci. 17 (1973) 3305.

    Google Scholar 

  30. J. Crank, “Mathematics of Diffusion” (Oxford University Press, 1956) Ch. 7.

  31. S. Allen, Ph.D. Thesis, North Carolina State University (1975).

  32. J. P. Craig, J. P. Knudsen andV. F. Holland,Text. Res. J. 32 (1962) 435.

    Google Scholar 

  33. J. H. Dumbleton andJ. Bell,J. Appl. Polymer Sci. 14 (1970) 2402.

    Google Scholar 

  34. S. B. Warner, L. H. Peebles Jr andD. R. Uhlmann,J. Mater. Sci. 14 (1979) in press.

  35. M. E. Fillery andP. J. Goodhew,Nature Phys. Sci. 233 (1971) 118.

    Google Scholar 

  36. C. N. Tyson,ibid. 229 (1971) 121.

    Google Scholar 

  37. S. B. Warner, L. H. Peebles Jr andD. R. Uhlmann,J. Mater. Sci. 14 (1979) 565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based in part on a thesis submitted by SBW in partial fulfilment of the requirements for the Sc.D. degree in materials engineering, MIT, 1976;

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, S.B., Peebles, L.H. & Uhlmann, D.R. Oxidative stabilization of acrylic fibres. J Mater Sci 14, 556–564 (1979). https://doi.org/10.1007/BF00772714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00772714

Keywords

Navigation