Skip to main content
Log in

Quantitative fractography

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In many disciplines, such as biology, botany, geology, materials science and medicine, quantitative image analysis is being used to an increasing extent. In materials science this technique makes it possible to relate the microsctructure to the mechanical properties. In this review we shall show that image analysis can be applied in a fractographic study to characterize quantitatively the morphology of fracture. Such an analysis provides information which, together with that obtained by mechanical tests, enables an explanation of the mechanism of rupture to be made.

The different problems encountered in quantitative fractography — analysis of fracture paths or of fractured surfaces — are presented, and the concept of mean plane of fracture is introduced. Whatever the type of analysis used, a small number of parameters exist which can be used to determine the size and proportion present of the different fracture morphologies. Then the stereometric relationships, first established for plane sections, are modified as a function of the morphology of the fracture surface. Methods based on the notion of linear roughness and on fractal object allow a quantitative description of the morphology of the fracture paths. A criticism is also made of the different types of analysis — manual, semi-automatic and automatic — used in quantitative fractography. Finally, some examples are given to show what kinds of investigations are possible using quantitative fractography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area (plane)

A′:

projected area

D(i):

diameter of equivalent sphere of classi

d(i):

diameter of equivalent circle of classi

H :

distance between two planes, tangent to a given object

L :

length

L′:

projected length

L 2 :

mean chord in space R2

L 3 :

mean chord in space R3

L P :

perimeter

k :

curvature

a :

major axis of ellipsoid of revolution

b :

small axis of ellipsoid of revolution

ε :

eccentricity of ellipsoid of revolution

t :

thickness of the thin film analysed

P P :

fraction of points

PP :

fraction of projected points

V V :

volume fraction

N V :

number of objects per unit volume

L V :

length per unit volume

S V :

(curved) surface per unit volume

P A :

number of points per unit area

N A :

number of objects per unit area

NA :

number of projected object per unit area

A A :

areal fraction

AA :

fraction of projected surface

L A :

length per unit area

LA :

projected length per unit area

N L :

number of objects per unit length

NL :

number of objects per unit projected length

L L :

fraction of length

LL :

fraction of projected length

L S :

length per unit of curved surface

N S :

number of objects per unit curved surface

S S :

fraction of curved surface

K :

fraction of fracture nominally flat

E :

thickness of plastic zone

R L :

linear roughness index, according to Pickens and Gurland

P S :

waveiness or linear index, according to Chermant, Coster and Osterstock

Δ:

discrepancy parameter at rupture

ρ :

ratio of value measured on fracture surface to those measured on a polished surface

D c :

critical diameter

L (j) :

Saltykov coefficient

X :

geometrical set to be analysed

x :

position of the structuring element

h :

measurement step size

r :

size of the structuring element

h′:

projection of step of sizeh

B :

structuring element

γ(h):

variogram function

E :

mathematical probability

D :

fractal dimension

σ rf :

rupture stress in bending

\(\bar L_{Co}\) :

mean free path in the cobalt phase

\(\bar D_{WC}\) :

mean diameter of tungsten carbide crystals

K IC :

critical stress intensity factor

References

  1. S. A. Saltykov, “Stereometric metallography” (Metallurgizdat, Moscow, 1958).

    Google Scholar 

  2. R. T. De Hoff andF. N. Rhines, “Quantitative Microscopy” (McGraw Hill, New York 1968).

    Google Scholar 

  3. E. E. Underwood, “Quantitative Stereology” (Addison Wesley, New York, 1970).

    Google Scholar 

  4. G. Matheron, “Eléments pour une théorie des milieux poreux” (Masson, Paris, 1967).

    Google Scholar 

  5. G. Matheron, “Les variables régionalisées et leur estimation” (Masson, Paris, 1965).

    Google Scholar 

  6. J. Serra, “Introduction à la morphologie mathématique”, Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau (ENSMP, 1969).

  7. S. M. El Soudani,Metallography 7 (1974) 271.

    Google Scholar 

  8. M. Coster, Thèse d'Etat, Université de Caen (1974).

  9. J. L. Chermant, M. Coster andA. Deschanvres,Metallography 8 (1975) 271.

    Google Scholar 

  10. M. G. Kendall andP. A. P. Moran, “Geometrical Probability” (Charles Griffin, London, 1963) pp. 74, 115.

    Google Scholar 

  11. B. Mandelbrot, “Les objects fractals, forme, hasard, dimension” (Flammarion, Paris, 1975) Ch. II.

    Google Scholar 

  12. J. R. Pickens andJ. Gurland, Fourth International Congress for Stereology, Gaithersburg, Maryland (NBS Special Publication, 1976) p. 269.

  13. J. L. Chermant, M. Coster andF. Osterstock,Metallography 9 (1976) 503.

    Google Scholar 

  14. B. Mandelbrot,Science 155 (1967) 636.

    Google Scholar 

  15. F. Hausdorff,Mathematische Annal. 79 (1919) 157.

    Google Scholar 

  16. M. Coster andJ. L. Chermant, International Symposium on Quantitative Metallography, edited by Associazione Italiana di Metallurgia, Milan (1978) p. 125.

  17. M. Coster,Pract. Met. (to be published).

  18. M. Coster andA. Deschanvres,Pract. Met. 8 (1978) 61.

    Google Scholar 

  19. C. Lanteujoul,ibid. 8 (1978) 40.

    Google Scholar 

  20. J. L. Chermant, M. Coster, G. Hautier andP. Schaufelberger,Powd. Met. 17 (1974) 85.

    Google Scholar 

  21. J. Serra andP. Cauwe, “Le variogramme”, fascicule 3 in 15 fascicules de Morphologie Mathématique Appliquée (Ecole des Mines, Fontainebleau, 1975).

    Google Scholar 

  22. T. Hersant, D. Jeulin andP. Parniere, “Notions de base de Morphologie Mathématique utilisées en métallographie quantitative”, Rapport IRSID, St-Germain en Laye (1976) andC.I.T. 6 (1976) 1449.

  23. J. L. Chermant andM. Coster Pract. Met. 14 (1977) 521.

    Google Scholar 

  24. W. Muller andH. Wasmund, Leitz Wetzlar Scientific and Technical Information6 (1976) 316.

    Google Scholar 

  25. Brevet No. 75-21-925, appareil destiné à analyser au moins un milieu hétérogène bi- ou tridimensionnel.

  26. J. C. Klein, Thèse de Docteur Ingénieur, Université de Nancy1 (1976).

  27. A. Mason andP. Kenny,Metallurgia (1970) 205.

  28. G. W. Lord andT. F. Willis,A.S.T.M. Bull. 177 (1951) 56.

    Google Scholar 

  29. J. Gurland,Trans. AIME 212 (1958) 452.

    Google Scholar 

  30. M. Contre, M. Coster, A. Deschanvres andL. Pons, IInd European Symposium on Powder Metallurgy, Stuttgart (1968) andPowder Met. Int. 3 (1971) 33.

    Google Scholar 

  31. J. L. Chermant, M. Coster andA. Iost, Eleventh Annual Meeting of the European High Pressure Research Group, London.

  32. J. L. Chermant, M. Coster, A. Deschanvres andA. Iost, 4th European Symposium on Powder Metallurgy, Grenoble (1975) paper no. 5–9.

  33. J. L. Chermant andF. Osterstock,J. Mater. Sci. 11 (1976) 1939.

    Google Scholar 

  34. K. D. Sheffler, R. H. Barkalow, A. Yuen andG. R. Leverant,Met. Trans. 8A (1977) 83.

    Google Scholar 

  35. P. Camard, J. L. Chermant andM. Coster,Pract. Met. 8 (1978) 126.

    Google Scholar 

  36. P. Camard, Thèse d'Ingénieur Docteur, Caen (1978).

  37. C. Bathias, Thèse de Doctorat ès-Sciences, Poitiers (1972).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chermant, J.L., Coster, M. Quantitative fractography. J Mater Sci 14, 509–534 (1979). https://doi.org/10.1007/BF00772710

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00772710

Keywords

Navigation