Advertisement

Catalysis Letters

, Volume 20, Issue 1–2, pp 59–71 | Cite as

A multiple-scattering approach to the study of X-ray absorption spectra of anatase and rutile

  • F. Bohr
  • M. F. Ruiz-López
  • A. Muñoz-Páez
Article

Abstract

Theoretical computations of the X-ray absorption spectra of the crystalline forms of TiO2, rutile and anatase, have been carried out in order to analyze the influence of multiple scattering contributions to the absorption coefficient. The cluster size used in the computations after making a detailed study of shell contributions, has been 75 atoms for rutile and 63 for anatase. This work has been envisaged as a suitable starting point to the analysis of experimental data for the more complicated TiO2 amorphous systems involved in catalytic processes.

Keywords

EXAFS XANES TiO2 multiple scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Kung, in:Transition Metal Oxides, Studies in Surface Science and Catalysis, Vol. 45, eds. B. Delmon and J.T. Yates, (Elsevier, Amsterdam, 1989) chs. 10,14.Google Scholar
  2. [2]
    K. Foger, Catal. Sci. Technol. 6 (1984) 227.Google Scholar
  3. [3]
    H.D. Gesser and P.C. Goswami, Chem. Rev. 89 (1989) 765.Google Scholar
  4. [4]
    M. Emili, L. Incoccia, S. Mobilio, G. Fagherazzi and M. Guglielmi, J. Non-Cryst. Solids 74 (1985) 129.Google Scholar
  5. [5]
    S. Asbrink, G.N. Greaves, P.H. Hatton and K. Garg, J. Appl. Cryst. 19 (1986) 331.Google Scholar
  6. [6]
    L.A. Grimes, Phys. Rev. B 27 (1983) 2111.Google Scholar
  7. [7]
    R. Brydson, H. Sauer, W. Engel, J.M. Thomas, E. Zeitler, N. Kosugi and H. Kuroda, J. Phys.: Condens. Matter 1 (1989) 797.Google Scholar
  8. [8]
    B. Poumellec, R. Cortes, G. Tourillon and J. Berthon, in:2nd European Conf. on Progress on X-ray Synchro. Rad. Res., Conf. Proc. Vol. 25, eds. A. Balerna, E. Bernieri and S. Mobilio (SIF, Bologna, 1990) p. 23.Google Scholar
  9. [9]
    F. Babonneau, S. Doeuff, A. Leaustic, C. Sanchez, C. Cartier and M. Verdaguer, Inorg. Chem. 27 (1988) 3166.Google Scholar
  10. [10]
    A. Munoz-Paez and G. Munuera, in:Preparation of Catalyst V, Studies in Surface Science and Catalysis, Vol. 62, eds. G. Poncelet, P.A. Jacobs, P. Grange and B. Delmon (Elsevier, Amsterdam, 1991) p. 627.Google Scholar
  11. [11]
    R. Kozlowski, R.F. Pettifer and J.M. Thomas, J. Phys. Chem. 87 (1983) 5172.Google Scholar
  12. [12]
    G. Vlaic, J.C.J. Bart, W. Cavigiolo, S. Mobilio and G. Novarra, A. Natuurforsch. 36a (1981) 1192.Google Scholar
  13. [13]
    P.A. Lee and J.B. Pendry, Phys. Rev. B11 (1975) 2795;Google Scholar
  14. [13] a
    B.K. Teo, J. Am. Chem. Soc. 103 (1981) 3990;Google Scholar
  15. [13] b
    J.J. Boland, S.E. Crane and J.D. Baldeswieler, J. Chem. Phys. 77 (1982) 142;Google Scholar
  16. [13] c
    S.J. Gurman, N. Binsted and I. Ross, J. Phys. C 19 (1986) 1845;Google Scholar
  17. [13] d
    S.P. Cramer, K.O. Hogson, E.I. Stiefel and W.E. Newton, J. Am. Chem. Soc. 100 (1978) 2748;Google Scholar
  18. [13] e
    M.S. Co, W.A. Hendrickson, K.O. Hogson and S. Doniach, J. Am. Chem. Soc. 105 (1983) 1144.Google Scholar
  19. [14]
    C.R. Natoli and M. Benfatto, J. Phys. (Paris) 47 C-8 (1986) 11;Google Scholar
  20. [14] a
    M. Benfatto, C.R. Natoli, A. Bianconi, J. Garcia, A. Marcelli, M. Fanfoni and Davoli, Phys. Rev. B 34 (1986) 5774;Google Scholar
  21. [14] b
    R.F. Pettifer, D.L. Foulis and C.F.W. Hermes, J. Phys. (Paris) 47 C-8 (1986) 545.Google Scholar
  22. [15]
    W.F. Lytle, R.B. Greefor and E.C. Marques, in:Proc. 9th Int. Congr. on Catalysis, eds. M.J. Phillips and M. Ternan (The Chem. Inst. Canada, Ottawa, 1988);Google Scholar
  23. [15] a
    J.A. Horsley and R.W. Lytle, in:Strong Metal Support Interactions, eds. R. Baker, S. Tauster and J. Dumesic, ACS Symp. Series, Vol. 298 (Am. Chem. Soc., Washington, 1986) p. 10.Google Scholar
  24. [16]
    M.F. Ruiz-López, M. Loos, J. Goulon, M. Benfatto and C.R. Natoli, Chem. Phys. 121 (1988) 419;Proc. VII Int. Conf. on X-ray Absorption Fine Structure, ed. Y. Kuroda (Japan Phys. Soc., Kobe, 1992).Google Scholar
  25. [17]
    C.R. Natoli and M. Benfatto, J. Phys. 47 C-8 (1986) 11.Google Scholar
  26. [18]
    J.J. Rehr, Japan. J. Appl. Phys. (1993), in press.Google Scholar
  27. [19]
    L. Fonda, J. Phys.: Condens. Matter 4 (1992) 8269.Google Scholar
  28. [20]
    M.F. Ruiz-López and A. Mumoz-Paez, J. Phys.: Condens. Matter 3 (1991) 8981.Google Scholar
  29. [21]
    F.W.H. Kampers, T.M.J. Maas, J. van Grondelle, P. Brinkgreve and D.C. Koningsberger, Rev. Sci. Instr. 60 (1989) 2635.Google Scholar
  30. [22]
    S. Hara, J. Phys. Soc. Japan 22 (1970) 710.Google Scholar
  31. [23]
    S.H. Chou, J.J. Rehr, E.A. Stern and E.R. Davidson, Phys. Rev. B 35 (1987) 264.Google Scholar
  32. [24]
    P. Sainctavit, J. Petiau, M. Benfatto and C.R. Natoli, Physica B 158 (1989) 347.Google Scholar
  33. [25]
    L. Hedin and S. Lundqvist, Solid State Phys. 23 (1969) 1.Google Scholar
  34. [26]
    M.F. Ruiz-López, A. Filipponi, A. Di Cico, T.A. Tyson, F. Bohr, M. Benfatto and C.R. Natoli, in:X-ray Absorption Fine Structure, ed. S.S. Hasnain (Horwood, New York, 1991) p. 75.Google Scholar
  35. [27]
    F.M.B. Duivenvoorden, D.C. Koningsberger, Y.S. Uh and B.C. Gates, J. Am. Chem. Soc. 108 (1986) 6254.Google Scholar
  36. [28]
    L. Bragg and G.F. Claringbull, in:Crystal Structures of Minerals (Bell, London, 1965).Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • F. Bohr
    • 1
  • M. F. Ruiz-López
    • 1
  • A. Muñoz-Páez
    • 2
  1. 1.Laboratoire de Chimie TheoriqueUmiversité de Nancy IVandoeuvre les NancyFrance
  2. 2.Departamento de Quimíica Inorgánica and Instituto de Ciencia de MaterialesUniversidad de Sevilla-CSICSevillaSpain

Personalised recommendations