Advertisement

Strength of Materials

, Volume 13, Issue 11, pp 1388–1392 | Cite as

Effect of alloying and quenching practice on the damping capacity of alloy Br.a10

  • G. Ya. Yaroslavskii
  • S. Yu. Kondrat'ev
  • B. S. Chaikovskii
  • V. N. Zenin
  • V. V. Matveev
Scientific-Technical Section
  • 27 Downloads

Conclusions

  1. 1.

    Damping capacity increases with a decrease in martensite transformation hysteresis due to a reduction in the number of twins in the martensite needles.

     
  2. 2.

    Changing the quenching temperature does not significantly affect the position of the critical points of the martensite transformation, the morphology of the martensite, or the damping capacity of theβ-alloys.

     
  3. 3.

    The amount of martensite transformation hysteresis and the vibration decrement are determined by the degree of alloying of the alloy and the nature of the alloying elements. The highest damping capacity is attained in alloys alloyed with zinc, the structure of which is characterized by coarse acicular martensite grains with an optimum number of twins.

     

In conclusion, we should note that, of the alloys investigated, the alloys of the copper-aluminum-zinc system have the best combination of damping, strength, and ductility properties.

Keywords

Zinc Martensite Ductility Optimum Number Martensite Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. A. Arbuzova, V. S. Gavrilyuk, and L. G. Khandros, “Internal friction in Cu-Al-Ni alloys in the temperature range of formation of elastic martensite crystals,” Fiz. Met. Metalloved.,27, No. 6, 1126–1128 (1969).Google Scholar
  2. 2.
    I. A. Arbuzova, V. S. Gavrilyuk, and L. G. Khandros, “Internal friction connected with the movement of phase boundaries during martensite transformations,” Fiz. Met. Metalloved.,30, No. 1, 181–185 (1970).Google Scholar
  3. 3.
    V. A. Teplov, V. A. Pavlov, and K. A. Malyshev, “Measurement of the amplitude dependence of internal friction in an alloy with thermoelastic martensite,” Fiz. Met. Metalloved.,27, No. 2, 339–342 (1969).Google Scholar
  4. 4.
    V. A. Teplov, K. A. Malyshev, and V. A. Pavlov, “Damping in copper-aluminum-nickel alloys and its causes,” Fiz. Met. Metalloved.,34, No. 1, 166–177 (1972).Google Scholar
  5. 5.
    L. Kaufman, S. A. Kalin, P. Nash, and R. Salzbrenner, “Internal absorption of vibrations in possible structural materials,” in: Shape Memory Effect in Alloys [Russian translation], Moscow (1979), pp. 448–455.Google Scholar
  6. 6.
    V. Deng, L. Kilei, and R. Batiste, “Damping capacity of martensitic copper-zinc-aluminum alloys,” in: Martensite Transformations: Documents of an International Conference. “ICOMAT-77,” Kiev (1978), pp. 190–193.Google Scholar
  7. 7.
    K. Sugimoto, “Basic and applied research of high-damping alloys for application to noise control,” Mem. Inst. Sci. Ind. Res. Osaka Univ.,35, 31–44 (1978).Google Scholar
  8. 8.
    G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Vibration-Absorbing Properties of Structural Materials [in Russian], Naukova Dumka, Kiev (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • G. Ya. Yaroslavskii
    • 1
  • S. Yu. Kondrat'ev
    • 1
  • B. S. Chaikovskii
    • 1
  • V. N. Zenin
    • 1
  • V. V. Matveev
    • 1
  1. 1.Institute of Strength ProblemsAcademy of Sciences of the Ukrainian SSRKiev, Leningrad

Personalised recommendations