Strength of Materials

, Volume 13, Issue 11, pp 1337–1341 | Cite as

Creep of niobium alloy with solid solution reinforcement

  • A. A. Kissil'
  • O. S. Tsvikilevich
  • E. M. Lyutyi
Scientific-Technical Section


  1. 1.

    The creep of niobium alloys with solid-solution reinforcement in the temperature range 800–1600°C is controlled by the same mechanism: the transition of edge dislocations.

  2. 2.

    The use of Garofalo-Li coordinates (log [Sh(ασ)] − logɛstab) makes possible the extrapolation of the established creep rate to lower rates (to 0.00001% ·h−1).



Solid Solution Niobium Creep Rate Edge Dislocation Niobium Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. S. Tsvilyuk, V. I. Pyl'nikov, and V. A. Men'shikh, “Resistance of the 5VMTsU niobium alloy in superhigh vacuum,” Probl. Prochn., No. 1, 65–69 (1978).Google Scholar
  2. 2.
    A. E. Kissil', E. M. Lyutyi, P. A. Khandarov, et al., “Effect of high-temperature aging in vacuum on the creep of 5VMTsU,” Probl. Prochn., No. 5, 40–43 (1979).Google Scholar
  3. 3.
    A. E. Kissil', E. M. Lyutyi, A. G. Arakelov, et al., “Effect of long-term high-temperature aging on the creep of Nb-Zr-C alloy in vacuum,” Fiz.-Khim. Mekh. Mater., No. 1, 59–64 (1978).Google Scholar
  4. 4.
    E. V. Vasil'eva, D. A. Prokoshkin, N. I. Popov, and É. Lazarev, “Investigation of heat-resistance of binary niobium alloys with tungsten, vanadium, and titanium,” Izv. Akad. Nauk SSSR, Met., No. 6, 171–176 (1967).Google Scholar
  5. 5.
    G. I. Geminov and Z. G. Fridman, “Methods of mechanical testing of metals and alloys at high temperatures,” in: Results in Science and Technology, Metal Science and Heat Treatment [in Russian], Moscow (1969), pp. 130–213.Google Scholar
  6. 6.
    G. G. Maksimovich, E. M. Lyutyi, S. V. Nagirnyi, et al., Naukova Dumka (1976).Google Scholar
  7. 7.
    A. A. Yudin, “Generalization of the similarity of creep and its consequence,” Fiz. Met. Metalloved.,41, No. 3, 509–514 (1976).Google Scholar
  8. 8.
    F. Garofalo, Laws of Creep and Long-Term Strength of Metals [in Russian], Metallurgiya, Moscow (1968).Google Scholar
  9. 9.
    V. V. Moskvitin, Resistance of Viscoelastic Materials [in Russian], Nauka, Moscow (1972).Google Scholar
  10. 10.
    V. V. Krivenyuk and E. E. Zelenyuk, “Some features of the evaluation of long-term strength of an alloy on the basis of refractory bcc metals at high temperatures,” Probl. Prochn., No. 5, 79–86 (1975).Google Scholar
  11. 11.
    G. B. Fedorov, V. N. Gusev, F. I. Zhomov, et al., “Diffusion properties and creep of niobium alloys with tungsten at high temperatures,” Metall. Metalloved. Chist. Metall., No. 10, 52–58 (1973).Google Scholar
  12. 12.
    O. D. Sherby and J. Weertman, “Diffusion-controlled dislocation creep,” Acta Met.,27, No. 3, 387–400 (1979).Google Scholar
  13. 13.
    J. J. Sonas, “Comparison of creep and hot working strain-rate relationships,” Trans. ASME,62, 300 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • A. A. Kissil'
    • 1
  • O. S. Tsvikilevich
    • 1
  • E. M. Lyutyi
    • 1
  1. 1.Physicomechanical InstituteAcademy of Sciences of the Ukrainian SSRLvov

Personalised recommendations