Skip to main content

Cathodic process and cyclic redox reactions in aluminium electrolysis cells

Abstract

The cathode processes in aluminium electrolysis cells are discussed, with detailed descriptions of the chemical reactions and transport processes leading to loss of current efficiency with respect to aluminium. The cathode current consuming reactions can be described by (i) the aluminium formation reaction, and (ii) reduction reactions forming so-called dissolved metal species (reduced entities). The rate determining steps for the aluminium forming process are mass transport of AIF3 to the metal surface, and mass transport of NaF away from the metal surface. In commercial cells there is continuous feed of impurity species to the electrolyte, depressing the concentration of dissolved metal species to very low equilibrium values in the bulk phase of the electrolyte. However, the equilibrium values of reduced entities in the electrolyte at the metal surface are much higher than in the bulk phase. This means that polyvalent impurity species are involved in cyclic redox reactions in the electrode and gas boundary layers. The most important rate-determining steps related to these cyclic processes are (i) mass transport of reduced entities from the metal surface to a reaction plane within the cathode boundary layer, and (ii) mass transport of impurity species from the electrolyte bulk phase to the reaction plane in the cathode boundary layer. This means that there is negligible transport of dissolved metal species through the bulk of the electrolyte phase during normal operation of commercial cells.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    H. Ginsberg and H. C. Wrigge,Metall. 26 (1972) 997.

    Google Scholar 

  2. [2]

    N. Jarrett, in ‘Production of Aluminium and Alumina’, (edited by A. R. Burkin), John Wiley, New York (1987) chapter 13.

  3. [3]

    H. Kvande,Mag. Alum. 26 (1989) 382.

    Google Scholar 

  4. [4]

    T. G. Pearson and J. Waddington,Discuss. Faraday Soc. 1 (1947) 307.

    Google Scholar 

  5. [5]

    A. Sterten,Acta Chem. Scand. 44 (1990) 873.

    Google Scholar 

  6. [6]

    A. Sterten, ‘Light Metals’, (edited by E. L. Rooy), Proceedings of the 120th TMS annual meeting (1991), p. 445.

  7. [7]

    A. Sterten,J. Appl. Electrochem. 18 (1988) 473.

    Google Scholar 

  8. [8]

    K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiosovsky and J. Thonstad, ‘Aluminium Electrolysis. Fundamentals of the Hall-Heroult process’, 2nd ed., Aluminium-Verlag, Düsseldorf (1982).

  9. [9]

    J. Thonstad,Can. J. Chem. 43 (1965) 3429.

    Google Scholar 

  10. [10]

    K. Yoshida and E. W. Dewing,Met. Trans. 3 (1972) 1817.

    Google Scholar 

  11. [11]

    R. Ødegård, A. Sterten and J. Thonstad,19B (1988) 449.

    Google Scholar 

  12. [12]

    X. Wang, R. D. Peterson and N. Richards, Light Metals, (edited by E. L. Rooy), Proceedings of the 120th TMS annual meeting (1991), p. 323.

  13. [13]

    E. W. Dewing and K. Yoshida,Can. Met. Quart. 15 (1976) 299.

    Google Scholar 

  14. [14]

    V. Borisoglebskii, M. M. Vetyukov and S. A. Nikiforov,Sov. Electrochem. 13 (1977) 506.

    Google Scholar 

  15. [15]

    R. Ødegård, ‘Solubility and Electrochemical Behaviour of Al and Al4C3 in Cryolitic Melts’', thesis, Norwegian Institute of Technology, Trondheim, Norway (1986).

    Google Scholar 

  16. [16]

    M. A. Bredig, ‘Molten Salt Chemistry’, (edited by M. Blander), Interscience Publishers, New York (1964), p. 367.

  17. [17]

    J. J. Egan and W. Freyland,Phys. Chem. 89 (1985) 381.

    Google Scholar 

  18. [18]

    G. M. Haarberg, K. S. Osen, J. J. Egan, H. Heyer and W. Freyland,Ber. Bunsenges. Phys. Chem. 92 (1988) 139.

    Google Scholar 

  19. [19]

    J. Liu, J.-C. Poignet,J. Appl. Electrochem. 22 (1992) 1110.

    Google Scholar 

  20. [20]

    G. M. Haarberg, K. S. Osen, J. Thonstad, R. J. Heus and J. J. Egan,ibid. 137 (1990) 2777.

    Google Scholar 

  21. [21]

    E. W. Dewing,Met. Trans. 22B (1991) 669.

    Google Scholar 

  22. [22]

    R. Piontelli, G. Montanelli and G. Sternheim,Rev. Metall. 53 (1956) 248.

    Google Scholar 

  23. [23]

    R. Piontelli,Electrochim. Metall 1 (1966) 191.

    Google Scholar 

  24. [24]

    J. Thonstad and S. Rolseth,Electrochim. Acta 23 (1978) 221.

    Google Scholar 

  25. [25]

    ,23 (1978) 233.

    Google Scholar 

  26. [26]

    E. Sum and M. Skyllas-Kazacos,23 (1978) 677.

    Google Scholar 

  27. [27]

    W. B. Frank and L. M. Foster,J. Phys. Chem. 61 (1957) 1531.

    Google Scholar 

  28. [28]

    S. K. Ratkje, H. Rajabu and T. Forland,Electrochim. Acta 37 (1992) 415.

    Google Scholar 

  29. [29]

    A. Sterten,25 (1980) 1673.

    Google Scholar 

  30. [30]

    J. Thonstad,J. Electrochem. Soc. 111 (1964) 955.

    Google Scholar 

  31. [31]

    H. G. Johansen, ‘Jern som forurensningselement i aluminium elektrolysen’, thesis, Department of Electrochemistry, Norwegian Institute of Technology, Trondheim, Norway (1975).

    Google Scholar 

  32. [32]

    S. Rolseth and J. Thonstad, Light Metals, (edited by G. M. Bell), Proceedings of the 110th TMS annual meeting (1981), p. 289.

  33. [33]

    P. Chin, ‘The Behaviour of Impurity Species in Hall-Heroult Aluminium Cells’, Dissertation, Carnegie Mellon University, Pittsburgh, Pennsylvania (1992).

    Google Scholar 

  34. [34]

    D. Bratland, K. Grjotheim, C. Krohn and K. Motzfeldt,J. Metals 19 (1967) 13.

    Google Scholar 

  35. [35]

    H. Numata and J. O'M. Bockris,Met. Trans. 15B (1984) 39.

    Google Scholar 

  36. [36]

    C. Szeker,Acta Technika Acad. Sci. Hung. 10 (1954) 19.

    Google Scholar 

  37. [37]

    A. Kerouanton and J. Badoz-Lambling,Rev. Chim. Minerale 11 (1974) 223.

    Google Scholar 

  38. [38]

    J. Gerlach and L. Deininger,Metall 33 (1979) 31.

    Google Scholar 

  39. [39]

    N. I. Anufrieva, L. S. Baranova and Z. N. Balashova,Sov. J. Non-Ferrous Met. 24 (1983) 38.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sterten, Å., Solli, P.A. Cathodic process and cyclic redox reactions in aluminium electrolysis cells. J Appl Electrochem 25, 809–816 (1995). https://doi.org/10.1007/BF00772198

Download citation

Keywords

  • Metal Surface
  • Mass Transport
  • Current Efficiency
  • Rate Determine Step
  • Bulk Phase