Advertisement

Catalysis Letters

, Volume 19, Issue 2–3, pp 167–180 | Cite as

Kinetic-transport models and the design of catalysts and reactors for the oxidative coupling of methane

  • Sebastian C. Reyes
  • C. P. Kelkar
  • Enrique Iglesia
Article

Abstract

The design of catalytic pellets and reactors using detailed kinetic-transport models is illustrated for the oxidative coupling of methane to form ethane and ethylene. Oxygen sieving within diffusion-limited pellets and staged oxygen injection reactors increase C2 selectivity by inhibiting full oxidation homogeneous pathways that lead to CO and CO2 products. Our simulations suggest that high densities of surface sites with kinetics that depend weakly on oxygen concentration are required to benefit from oxygen-sieving catalyst and reactor schemes. These sites favor beneficial surface activation processes even at the low oxygen concentrations present within staged injection reactors and diffusion-limited pellets. Controlled introduction of stoichiometric oxygen reactants leads to C2 yields as high as 50%; the reactions, however, occur at much slower rates and require much greater reactor volumes than in conventional cofeed reactors.

Keywords

Reaction-transport catalyst design reactor design methane coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Gray and G. Tomlinson, Report SAND-88-7110, Sandia National Laboratories (1988).Google Scholar
  2. [2]
    J.H. Lunsford, Langmuir 5 (1989) 12.Google Scholar
  3. [3]
    J.S. Lee and S.T. Oyama, Catal Rev.-Sci. Eng. 30 (1988) 249.Google Scholar
  4. [4]
    Y. Amenomiya, V.I. Birss, M. Goladzinowski, J. Galuszka and A.R. Sanger, Catal. Rev.-Sci. Eng. 32 (1990) 163.Google Scholar
  5. [5]
    S.C. Reyes, E. Iglesia and C.P. Kelkar, Chem. Eng. Sci., accepted.Google Scholar
  6. [6]
    S.C. Reyes, E. Iglesia and C.P. Kelkar, Abstracts 12th North American Meeting of the Catalysis Society, Lexington, KY, 1991.Google Scholar
  7. [7]
    S.C. Reyes and E. Iglesia, J. Catal. 129(1991)457.Google Scholar
  8. [8]
    G.B. Skinner, A. Lifshitz, K. Scheller and A. Burcat, J. Chem. Phys. 56 (1984) 3853.Google Scholar
  9. [9]
    J. Warnatz, in:Combustion Chemistry, ed. W.C. Gardiner (Springer, Berlin, 1990).Google Scholar
  10. [10]
    H. Zanthoff and M. Baerns, Ind. Eng. Chem. Res. 29 (1990) 2.Google Scholar
  11. [11]
    J.C. Mackie, J.G. Smith, P.F. Nelson and R.J. Tyler, Energy and Fuels 4 (1990) 277.Google Scholar
  12. [12]
    G.S. Bahn, Pyrodynamics 2(1965) 315.Google Scholar
  13. [13]
    W. Tsang and R.F. Hampson, J. Phys. Chem. Ref. Data 15(1986) 1087.Google Scholar
  14. [14]
    J.A. Labinger and K.C. Ott, J. Phys. Chem. 91 (1987) 2682.Google Scholar
  15. [15]
    J.G. McCarty, A.b. McEwen and M.A. Quinlan, in:New Developments in Selective Oxidation, eds. G. Centi and F. Trifiro (Elsevier, Amsterdam, 1990) p. 405.Google Scholar
  16. [16]
    T.A. Garibyan and L.Ya. Margolis, Catal. Rev.-Sci. Eng. 31 (1989/1990) 355.Google Scholar
  17. [17]
    J.W.M.H. Geerts, Q. Chen, J.M.N. van Kasteren and K. van der Wiele, Catal. Today 6 (1990) 519.Google Scholar
  18. [18]
    Y. Feng, J. Niiranen and D. Gutman, J. Phys. Chem. 95 (1991) 6558.Google Scholar
  19. [19]
    Y. Feng, J. Niiranen and D. Gutman, J. Phys. Chem. 95 (1991) 6564.Google Scholar
  20. [20]
    G.S. Lane and E.E. Wolf, J. Catal. 113 (1988) 144.Google Scholar
  21. [21]
    M.W. Droege, L.M. Hiar, W.J. Pitz and C.K. Westbrook, SPE19081 (1989) 247.Google Scholar
  22. [22]
    L.M. Aparicio, S.A. Rossini, D.M. Sanfilippo, J.E. Rekoske, A.A. Trevino and J.A. Dumesic, Ind. Eng. Chem. Res. 30 (1991) 2114.Google Scholar
  23. [23]
    V.R. Choudhary, S.T. Chaudhari, A.M. Rajput and V.H. Rane, J. Chem. Soc. Chem. Commun. (1989) 1526.Google Scholar
  24. [24]
    J. Santamaria, M. Menendez, J.A. Peña and J.I. Barahona, Catal. Today 13 (1992) 353.Google Scholar
  25. [25]
    K.J. Smith and J.Z. Galuszka, United States Patent 5,132,482 (1992), assigned to Alberta Research Council.Google Scholar
  26. [26]
    C.A. Jones, J.J. Leonard and J.A. Sofranko, Energy and Fuels 1 (1987) 12.Google Scholar
  27. [27]
    A. Gaffney, C.A. Jones, J.J. Leonard and J.A. Sofranko, in:Catalysis, ed. J.W. Ward (Elsevier, Amsterdam, 1988).Google Scholar
  28. [28]
    Y. Mortazavi, R.R. Hudgins and P.L. Silveston, in:Progress in Catalysis, eds. K.J. Smith and E.C. Sanford (Elsevier, Amsterdam, 1992) p. 119.Google Scholar
  29. [29]
    J.H. Edwards, K.T. Do and R.J. Tyler, Catal. Today 6 (1990) 435.Google Scholar
  30. [30]
    L. Mleczko, R. Andorf and M. Baerns, Chem. Eng. Technol. 14 (1991) 325.Google Scholar
  31. [31]
    D. Eng and M. Stoukides, in:Proc. 9th Int. Congr. on Catalysis, Vol. 2, eds. M.J. Phillips and M. Ternan (The Chemical Society of Canada, Ottawa, 1988) p. 974.Google Scholar
  32. [32]
    K. Omata, S. Hashimoto, H. Tominaga and K. Fujimoto, Appl. Catal. 52 (1989) L1.Google Scholar
  33. [33]
    N. Mouaddib, K.R. Thampi, A.J. McEvoy, J. Kiwi and M. Gratzel, Catal. Lett. 5 (1990) 285.Google Scholar
  34. [34]
    G. Follmer, L. Lehmann and M. Baerns, Catal. Today 4 (1989) 323.Google Scholar
  35. [35]
    J.M. Santamaria, E.E. Miro and E.E. Wolf, Ind. Eng. Chem. Res. 30 (1991) 1157.Google Scholar
  36. [36]
    J.G. McCarty, American Chemical Society, Div. Petr. Chem. Preprint 36 (1991) 142.Google Scholar
  37. [37]
    N.I. Il'chenko, L.N. Raevskaya, A.I. Bostan and G.I. Golodets, Kinet. Katal. 32 (1991) 873.Google Scholar
  38. [38]
    S.K. Agarwal, R.A. Migone and G.J. Marcelin, J. Catal. 121 (1990) 110.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • Sebastian C. Reyes
    • 1
  • C. P. Kelkar
    • 1
  • Enrique Iglesia
    • 1
  1. 1.Corporate Research LaboratoriesExxon Research and Engineering CompanyAnnandaleUSA

Personalised recommendations