Strength of Materials

, Volume 23, Issue 7, pp 751–756 | Cite as

Calculating the cracking resistance of ceramics by a numerical experiment method

  • D. N. Karpinskii
  • I. A. Parinov
Scientific-Technical Section
  • 32 Downloads

Abstract

Various mechanisms of main crack propagation in a polycrystalline material are examined on the basis of a previously proposed numerical model of the microstructure. Intergranular macrocrack growth in the presence of microcracks in part of intercluster boundaries is examined in the plane case, whereas the mixed failure including intergranular or transgranular propagation of the macrocrack in relation to the cracking resistance value is examined in the spatial case. The effect of elements of the microstructure (microcracks and voids) on the strength characteristics of the material is determined.

Keywords

Microstructure Numerical Model Numerical Experiment Experiment Method Strength Characteristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Failure [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    G. P. Cherepanov, Mechanics of Brittle Fractures [in Russian], Nauka, Moscow (1974).Google Scholar
  3. 3.
    Yu. V. Sokolkin and A. A. Tashkinov, Mechanics of Deformation and Failure of Structurally Heterogeneous Solids [in Russian], Nauka, Moscow (1984).Google Scholar
  4. 4.
    M. Onami, S. Iwasimidzu, K. Genka, et al., An Introduction to Micromechanics [Russian translation], Metallurgiya, Moscow (1987).Google Scholar
  5. 5.
    P. M. Vitvitskii and S. Yu. Popina, Strength and Criteria of Brittle Fracture of Stochastically Defective Solids [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  6. 6.
    V. P. Zatsarinnyi, Strength of Piezoceramics [in Russian], Rostov-on-Don University, Rostov-on-Don (1978).Google Scholar
  7. 7.
    G. G. Pisarenko, Strength of Piezoceramics [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  8. 8.
    O. P. Kramarov, A. V. Belyaev, and S. O. Kramarov, “A method of annealing components made of piezoelectric ceramics,” Inventor's Certificate No. 1,198,043 USSR, NCI G 04 B 35/64, Published June 27, 1983, Byull. No. 46.Google Scholar
  9. 9.
    A. V. Belyaev, D. N. Karpinskii, S. O. Kramarov, and I. A. Parinov, “Examination of the process of formation of the microstructure of piezoceramic and its cracking resistance by the numerical experimental method,” Izv. Severokavkaz. Nauchn. Trentr. Vyssh. Shkola, Estestven. Nauki, No. 4, 66–70 (1989).Google Scholar
  10. 10.
    D. N. Karpinsky and I. A. Parinov, “Computer simulation of sintering and piezoceramic fracture toughness,” in: Electronic Ceramics Production and Properties [in Russian], Proceedings of International Conference, Part 1, Riga (1990), pp. 100–102.Google Scholar
  11. 11.
    A. Kofman, An Introduction into Applied Combinatorics [in Russian], Nauka, Moscow (1975).Google Scholar
  12. 12.
    J. W. Hutchinson, “Crack tip shielding by microcracking in brittle solids,” Acta Met.,35, No. 7, 1605–1620 (1987).Google Scholar
  13. 13.
    F. F. Lange, “Interaction of a crack front with a second-phase dispersion,” Philos. Mag.,22, No. 179, 982–992 (1970).Google Scholar
  14. 14.
    D. N. Karpinskii, I. A. Parinov, and A. E. Filippov, “Examination of subcritical crack growth and cracking resistance in heterogeneous materials,” in: Physics of Strength of Heterogeneous Materials [in Russian], Leningrad Institute of Technical Physics, Leningrad (1988), pp. 159–168.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • D. N. Karpinskii
    • 1
  • I. A. Parinov
    • 1
  1. 1.Scientific and Research Institute of Mechanics and Applied MathematicsRostov-on-Don UniversityUSSR

Personalised recommendations