General Relativity and Gravitation

, Volume 8, Issue 5, pp 357–364 | Cite as

H-space and Robinson-Trautman solutions

  • M. Ludvigsen
Research Articles

Abstract

It is shown that in theH-space of any Robinson-Trautman type II solution there is a uniquely defined world-line and that, under suitable regularity conditions, this world-line is a geodesic.

Keywords

Null Hypersurface Spin Weight Suitable Regularity Condition Symmetric Tensor Field Future Null Infinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newman, E. T. (1976).Gen. Rel. Grav.,7, 107.CrossRefADSGoogle Scholar
  2. 2.
    Penrose, R. (1976).Gen. Rel. Grav.,7, 171.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Hansen, R. O., and Newman, E. T. preprint.Google Scholar
  4. 4.
    Penrose, R. (1968). “The Structure of Space-Time,” in:Battell Rencontres in Mathematics and Physics, ed. Dewitt, C. (W. A. Benjamin Inc., New York).Google Scholar
  5. 5.
    Newman, E. T., and Penrose, R. (1966).J. Math Phys., NY,7, 863; Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlick, F., and Sudarshan, E. C. G. (1967).J. Math. Phys., NY,8, 2155.CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Lind, R. W., Messmer, J., and Newman, E. T.,J. Math. Phys., NY,13, 1884 (1972).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Newman, E. T., and Tamburino, L. (1962).J. Math. Phys.,3, 902.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Robinson, I., and Trautman, A. (1962).Proc. R. Soc. (London),265, 463.MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Newman, E. T., and Posadas, R. (1969).Phys. Rev., 187.Google Scholar
  10. 10.
    Penrose, R. (1974). in:Group Theory in Non-Linear Problems, ed. Barut, A. O. (D. Reidel, Dordrecht).Google Scholar

Copyright information

© Plenum Publishing Corp. 1977

Authors and Affiliations

  • M. Ludvigsen
    • 1
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburgh

Personalised recommendations