General Relativity and Gravitation

, Volume 8, Issue 5, pp 357–364 | Cite as

H-space and Robinson-Trautman solutions

  • M. Ludvigsen
Research Articles


It is shown that in theH-space of any Robinson-Trautman type II solution there is a uniquely defined world-line and that, under suitable regularity conditions, this world-line is a geodesic.


Null Hypersurface Spin Weight Suitable Regularity Condition Symmetric Tensor Field Future Null Infinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman, E. T. (1976).Gen. Rel. Grav.,7, 107.CrossRefADSGoogle Scholar
  2. 2.
    Penrose, R. (1976).Gen. Rel. Grav.,7, 171.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Hansen, R. O., and Newman, E. T. preprint.Google Scholar
  4. 4.
    Penrose, R. (1968). “The Structure of Space-Time,” in:Battell Rencontres in Mathematics and Physics, ed. Dewitt, C. (W. A. Benjamin Inc., New York).Google Scholar
  5. 5.
    Newman, E. T., and Penrose, R. (1966).J. Math Phys., NY,7, 863; Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlick, F., and Sudarshan, E. C. G. (1967).J. Math. Phys., NY,8, 2155.CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Lind, R. W., Messmer, J., and Newman, E. T.,J. Math. Phys., NY,13, 1884 (1972).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Newman, E. T., and Tamburino, L. (1962).J. Math. Phys.,3, 902.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Robinson, I., and Trautman, A. (1962).Proc. R. Soc. (London),265, 463.MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Newman, E. T., and Posadas, R. (1969).Phys. Rev., 187.Google Scholar
  10. 10.
    Penrose, R. (1974). in:Group Theory in Non-Linear Problems, ed. Barut, A. O. (D. Reidel, Dordrecht).Google Scholar

Copyright information

© Plenum Publishing Corp. 1977

Authors and Affiliations

  • M. Ludvigsen
    • 1
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburgh

Personalised recommendations