General Relativity and Gravitation

, Volume 8, Issue 5, pp 313–319 | Cite as

Quadrupole test particle as a detector of gravitational waves

  • Risto Tammelo
Research Articles


In this paper it is shown that in general relativity the theory of motion of quadrupole test particles (QTP's) can be used to describe the energy and angular momentum absorption by detectors of gravitational waves. By specifying the form of the quadrupole moment tensor Taub's [7] equations of motion of QTP's are simplified. In these equations the terms describing the change of the mass and of the angular momentum of a QTP due to external gravitational waves are found to occur. The limiting case of the flat space-time is also briefly discussed.


Gravitational Wave Quadrupole Moment Mass Element World Line Heterodyne Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weber, J. (1961).General Relativity and Gravitational Waves (Interscience, New York-London).MATHGoogle Scholar
  2. 2.
    Braginsky, V. B., and Nazarenko, V. C. (1972). InGravitation, Problems and Prospects (Naukovo Dumka, Kiev), pp. 9–16.Google Scholar
  3. 3.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (Freeman, San Francisco).Google Scholar
  4. 4.
    Mathisson, M. (1937).Acta Phys. Polon.,6, 163.MATHGoogle Scholar
  5. 5.
    Dixon, W. G. (1964).Nuovo Cimento,34, 317.MATHCrossRefGoogle Scholar
  6. 6.
    Dixon, W. G. (1974).Phil. Trans. R. Soc. (London),A277, 59.CrossRefADSGoogle Scholar
  7. 7.
    Taub, A. H. (1965). InAtti del convegno sulla relatività generale: problemi dell'energia e onde gravitazionali, Firenze 1964, (Florence), pp. 100–118.Google Scholar
  8. 8.
    Taub, A. H. (1965). InProceedings of the International Conference on Relativistic Theories of Gravitation (King's College, London).Google Scholar
  9. 9.
    Beiglböck, W. (1956). Dissertation (Universität Hamburg, Hamburg) [cited after Beiglböck, W. (1967).Commun. Math. Phys.,5, 106].Google Scholar
  10. 10.
    Madore, J. (1969).Ann. Inst. Henri Poincaré,11, 221.MathSciNetGoogle Scholar
  11. 11.
    Epikhin, E. N. (1976). InSummaries of Reports at the 4th Soviet Conference on Gravitation (Minsk), pp. 117–118.Google Scholar
  12. 12.
    Lathrop, J. D. (1973).Ann. Phys. (N.Y.),79, 580.MATHCrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corp. 1977

Authors and Affiliations

  • Risto Tammelo
    • 1
  1. 1.Institute of PhysicsAcademy of Sciences of the E.S.S.R.TartuEstonia 202400, USSR

Personalised recommendations